534 research outputs found
Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions
The microscopic description of heavy-ion reactions at low beam energies is
achieved within hadronic transport approaches. In this article a new approach
SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced
and applied to study the production of non-strange particles in heavy-ion
reactions at GeV. First, the model is described including
details about the collision criterion, the initial conditions and the resonance
formation and decays. To validate the approach, equilibrium properties such as
detailed balance are presented and the results are compared to experimental
data for elementary cross sections. Finally results for pion and proton
production in C+C and Au+Au collisions is confronted with HADES and FOPI data.
Predictions for particle production in collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor
change
Paths to equilibrium in non-conformal collisions
We extend our previous analysis of holographic heavy ion collisions in non-conformal theories. We provide a detailed description of our numerical code. We study collisions at different energies in gauge theories with different degrees of non-conformality. We compare four relaxation times: the hydrodynamization time (when hydrodynamics becomes applicable), the EoSization time (when the average pressure approaches its equilibrium value), the isotropization time (when the longitudinal and transverse pressures approach each other) and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value). We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized. We also explore the rapidity distribution of the energy density at hydrodynamization. This is far from boost-invariant and its width decreases as the non-conformality increases. Nevertheless, the velocity field at hydrodynamization is almost exactly boost-invariant regardless of the non-conformality. This result may be used to constrain the initialization of hydrodynamic fields in heavy ion collisions
A Vector Supersymmetry in Noncommutative U(1) Gauge Theory with the Slavnov Term
We consider noncommutative U(1) gauge theory with the additional term,
involving a scalar field lambda, introduced by Slavnov in order to cure the
infrared problem. we show that this theory, with an appropriate space-like
axial gauge-fixing, wxhibits a linear vector supersymmetry similar to the one
present in the 2-dimensional BF model. This vector supersymmetry implies that
all loop corrections are independent of the -vertex and thereby
explains why Slavnov found a finite model for the same gauge-fixing.Comment: 18 pages, 3 figures; v2 Acknowledgments adde
Gauge Independence of IR singularities in Non-Commutative QFT - and Interpolating Gauges
IR divergences of a non-commutative U(1) Maxwell theory are discussed at the
one-loop level using an interpolating gauge to show that quadratic IR
divergences are independent not only from a covariant gauge fixing but also
independent from an axial gauge fixing.Comment: 11 pages, 2 figures, v1 minor correction
A Generalization of Slavnov-Extended Non-Commutative Gauge Theories
We consider a non-commutative U(1) gauge theory in 4 dimensions with a
modified Slavnov term which looks similar to the 3-dimensional BF model. In
choosing a space-like axial gauge fixing we find a new vector supersymmetry
which is used to show that the model is free of UV/IR mixing problems, just as
in the previously discussed model in arXiv:hep-th/0604154. Finally, we present
generalizations of our proposed model to higher dimensions.Comment: 25 pages, no figures; v2 minor correction
Is the time ripe for new diagnostic criteria of cognitive impairment due to cerebrovascular disease? Consensus report of the International Congress on Vascular Dementia working group
Background: Long before Alzheimer's disease was established as the leading cause of dementia in old age, cerebrovascular lesions were known to cause cognitive deterioration and associated disability. Since the middle of the last century, different diagnostic concepts for vascular dementia and related syndromes were put forward, yet no widely accepted diagnostic consensus exists to date. Discussion: Several international efforts, reviewed herein, are ongoing to define cognitive impairment due to cerebrovascular disease in its different stages and subtypes. The role of biomarkers is also being discussed, including cerebrospinal fluid proteins, structural and functional brain imaging, and genetic markers. The influence of risk factors, such as diet, exercise and different comorbidities, is emphasised by population-based research, and lifestyle changes are considered for the treatment and prevention of dementia. Conclusion: To improve the diagnosis and management of vascular cognitive impairment, further progress has to be made in understanding the relevant pathomechanisms, including shared mechanisms with Alzheimer's disease;bringing together fragmented research initiatives in coordinated international programs;testing if known risk factors are modifiable in prospective interventional studies;and defining the pre-dementia and pre-clinical stages in line with the concept of mild cognitive impairment due to Alzheimer's disease
Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies
Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype
Phase Transitions, Inhomogeneous Horizons and Second-Order Hydrodynamics
We use holography to study the spinodal instability of a four-dimensional, strongly-coupled gauge theory with a first-order thermal phase transition. We place the theory on a cylinder in a set of homogeneous, unstable initial states. The dual gravity configurations are black branes afflicted by a Gregory-Laflamme instability. We numerically evolve Einstein's equations to follow the instability until the system settles down to a stationary, inhomogeneous black brane. The dual gauge theory states have constant temperature but non-constant energy density. We show that the time evolution of the instability and the final states are accurately described by second-order hydrodynamics. In the static limit, the latter reduces to a single, second-order, non-linear differential equation from which the inhomogeneous final states can be derived
- …