252 research outputs found

    Plans for Kaon Physics at BNL

    Full text link
    I give an overview of current plans for kaon physics at BNL. The program is centered on the rare decay modes K+ --> pi+ nu nubar and KL --> pi0 nu nubar.Comment: 10 pages, 8 figures. Uses espcrc2.sty. For the proceedings of HIF04: High Intensity Frontier Workshop, La Biodola, Isola D'Elba, June 5-8, 200

    The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bacterium <it>Borrelia burgdorferi</it>, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several <it>B. burgdorferi </it>genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of <it>B. burgdorferi </it>to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the role of RpoS, one of two alternative sigma factors present in <it>B. burgdorferi</it>, in the regulation of chitin utilization.</p> <p>Results</p> <p>Using fluorescent chitinase substrates, we demonstrated an inherent chitinase activity in rabbit serum, a component of the <it>B. burgdorferi </it>growth medium (BSK-II). After inactivating this activity by boiling, we showed that wild-type cells can utilize chitotriose, chitohexose or coarse chitin flakes in the presence of boiled serum and in the absence of free GlcNAc. Further, we replaced the serum component of BSK-II with a lipid extract and still observed growth on chitin substrates without free GlcNAc. In an attempt to knockout <it>B. burgdorferi </it>chitinase activity, we generated mutations in two genes (<it>bb0002 </it>and <it>bb0620</it>) predicted to encode enzymes that could potentially cleave the β-(1,4)-glycosidic linkages found in chitin. While these mutations had no effect on the ability to utilize chitin, a mutation in the gene encoding the chitobiose transporter (<it>bbb04</it>, <it>chbC</it>) did block utilization of chitin substrates by <it>B. burgdorferi</it>. Finally, we provide evidence that chitin utilization in an <it>rpoS </it>mutant is delayed compared to wild-type cells, indicating that RpoS may be involved in the regulation of chitin degradation by this organism.</p> <p>Conclusions</p> <p>The data collected in this study demonstrate that <it>B. burgdorferi </it>can utilize chitin as a source of GlcNAc in the absence of free GlcNAc, and suggest that chitin is cleaved into dimers before being imported across the cytoplasmic membrane via the chitobiose transporter. In addition, our data suggest that the enzyme(s) involved in chitin degradation are at least partially regulated by the alternative sigma factor RpoS.</p

    The proton low-mass microquasar: high-energy emission

    Get PDF
    A population of unidentified gamma-ray sources is forming a structure resembling a halo around the Galactic center. These sources are highly variable, and hence they should be associated with compact objects. Microquasars are objects undergoing accretion with relativistic jets; if such an object has a low-mass, evolved, donor star, it might be found in the Galactic halo. If these low-mass microquasars can generate detectable gamma-ray emission, then they are natural candidates to account for the halo high-energy sources. We aim to construct models for high-energy emission of low-mass microquasars, which could produce a significant luminosity in the gamma-ray domain. We consider that a significant fraction of the relativistic particles in the jets of low-mass microquasars are protons and then we study the production of high-energy emission through proton synchrotron radiation and photopion production. Photopair production and leptonic processes are considered as well. We compute a number of specific models with different parameters to explore the possibilities of this scenario.} We find that important luminosities, in the range of 1034103710^{34}-10^{37} erg s1^{-1}, can be achieved by proton synchrotron radiation in the Gamma-Ray Large Area Space Telescope (GLAST) energy range, and lower, but still significant luminosities at higher energies for some models. We conclude that the "proton microquasar" model offers a very interesting alternative to account for the halo gamma-ray sources and presents a variety of predictions that might be tested in the near future by instruments like GLAST, the High-Energy Stereoscopic System II (HESS II), the Major Atmospheric Gamma-ray Imaging Cherenkov telescope II (MAGIC II), and neutrino telescopes like IceCube.Comment: 11 pages, 7 figures, final version, accepted for publication in A&

    Neutral Beams from Blazar Jets

    Get PDF
    We treat the production of neutrons, photons, and neutrinos through photomeson interactions of relativistic protons with ambient photons in the compact inner jets of blazars. We show that the presence of the external UV radiation field makes possible strong energy losses already for protons with energies > 1 PeV, while without this component effective energy losses of protons begin only at E > 10^{18} eV. We develop a model describing the production and escape of neutrons from a comoving spherical blob, which continue to interact with the ambient external radiation field on the parsec-scale broad line region (BLR). Neutrons may carry ~10% of the overall energy of the protons accelerated beyond E ~ 1 PeV outside the BLR. Ultra-high energy (UHE) gamma rays produced in photomeson interactions of neutrons outside the blob can also escape the BLR. The escaping neutrons, gamma rays and neutrinos form a collimated neutral beam with a characteristic opening angle ~ 1/Gamma, where Gamma is the bulk Lorentz factor of the inner jet. The energy and the momentum of such beam is then mostly deposited in the extended jet due to neutron decay at distances ~ (E_n/10^{17} eV}) kpc, and through pair-production attenuation of gamma rays with energies E_g ~ 10^{15}-10^{18} eV which can propagate to distances beyond (10-100) kpc. In this scenario, neutral beams of UHE gamma rays and neutrons can be the reason for straight extended jets such as in Pictor A. Fluxes of neutrinos detectable with km-scale neutrino telescopes are predicted from flat spectrum radio quasars such as 3C 279.Comment: to appear in ApJ 586, No.1, March 20 issu

    Relativistic Wind Bubbles and Afterglow Signatures

    Full text link
    Highly magnetized, rapidly rotating compact objects are widely argued as central energy sources of γ\gamma-ray bursts (GRBs). After the GRB, such a magnetar-like object may directly lose its rotational energy through some magnetically-driven processes, which produce an ultrarelativistic wind dominated possibly by the energy flux of electron-positron pairs. The interaction of such a wind with an outward-expanding fireball leads to a relativistic wind bubble, being regarded as a relativistic version of the well-studied Crab Nebula. We here explore the dynamics of this wind bubble and its emission signatures. We find that when the injection energy significantly exceeds the initial energy of the fireball, the bulk Lorentz factor of the wind bubble decays more slowly than before, and more importantly, the reverse-shock emission could dominate the afterglow emission, which yields a bump in afterglow light curves. In addition, high polarization of the bump emission would be expected if a toroidal magnetic field in the shocked wind dominates over the random component.Comment: 7 pages including 1 figure, emulateapj style, expanded version accepted for publication in Ap

    Magnetic field effects on neutrino production in microquasars

    Get PDF
    We investigate the effects of magnetic fields on neutrino production in microquasars. We calculate the steady particle distributions for the pions and muons generated in p-gamma and p-p interactions in the jet taking the effects of all energy losses into account. The obtained neutrino emission is significantly modified due to the synchrotron losses suffered by secondary pions and muons. The estimates made for neutrino fluxes arriving on the Earth imply that detection of high-energy neutrinos from the vicinity of the compact object can be difficult. However, in the case of windy microquasars, the interaction of energetic protons in the jet with matter of dense clumps of the wind could produce detectable neutrinos. This is because the pions and muons at larger distances from the compact object will not be affected by synchrotron losses.Comment: 12 pages, 11 figures, accepted for publication in A&

    New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula

    Get PDF
    We set constraints on O(E/M) Lorentz Violation in QED in an effective field theory framework. A major consequence of such assumptions is the modification of the dispersion relations for electrons/positrons and photons, which in turn can affect the electromagnetic output of astrophysical objects. We compare the information provided by multiwavelength observations with a full and self-consistent computation of the broad-band spectrum of the Crab Nebula. We cast constraints of order 10^{-5} at 95% confidence level on the lepton Lorentz Violation parameters.Comment: 23 pages, 9 figures. v2: added comments and references, matches version accepted by JCA

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor

    Precision Study of Positronium: Testing Bound State QED Theory

    Full text link
    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positronium tests compared to other QED experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May 30-31, 2003
    corecore