1,403 research outputs found

    The role of shock induced trailing-edge separation in limit cycle oscillations

    Get PDF
    The potential role of shock induced trailing edge separation (SITES) in limit cycle oscillations (LCO) was established. It was shown that the flip-flop characteristics of transition to and from SITES as well as its hysteresis could couple with wing modes with torsional motion and low damping. This connection led to the formulation of a very simple nonlinear math model using the linear equations of motion with a nonlinear step forcing function with hysteresis. A finite difference solution with time was developed and calculations were made for the F-111 TACT were used to determine the step forcing function due to SITES transition. Since no data were available for the hysteresis, a parameter study was conducted allowing the hysteresis effect to vary. Very small hysteresis effects, which were within expected bounds, were required to obtain reasonable response levels that essentially agreed with flight test results. Also in agreement with wind tunnel tests, LCO calculations for the 1/6 scale F-111 model showed that the model should have not experienced LCO

    GALEX Measurements of the Big Blue Bump in Soft X-ray Selected AGN

    Full text link
    We study the UV properties of Type I AGN from the ROSAT All-Sky Survey that have been selected to show unusually soft X-ray continua. We examine a sample of 54 Seyfert 1 galaxies with detections in both Near-UV and Far-UV bands of the Galaxy Evolution Explorer (GALEX) satellite. Our sample is systematically fainter in the UV than galaxies studied in similar work by previous authors. We look for correlations between their UV and X-ray properties as well as correlations of these properties with either black hole mass or Eddington ratio. The shape of the Big Blue Bump(BBB) in the GALEX regime does not appear to correlate with its strength relative to the power law continuum, which conflicts with results reported by previous authors. The strength of the BBB is correlated with the shape of the X-ray continuum, in agreement with previous work, but the slope of the correlation is different than previously reported. The properties of the accretion disks of Type I AGN in the GALEX regime are relatively independent of black hole mass and Eddington ratio. We compare our measurements to the predictions of alternative theories for the origin of the soft excess, but we are unable to distinguish between Comptonization of BBB photons by a hot plasma and absorption in relativistic winds as the most likely origins for the soft X-ray excess.Comment: 42 pages, 15 figures. Accepted by Ap

    Long-Term Average Cost in Featured Transition Systems

    Get PDF
    A software product line is a family of software products that share a common set of mandatory features and whose individual products are differentiated by their variable (optional or alternative) features. Family-based analysis of software product lines takes as input a single model of a complete product line and analyzes all its products at the same time. As the number of products in a software product line may be large, this is generally preferable to analyzing each product on its own. Family-based analysis, however, requires that standard algorithms be adapted to accomodate variability. In this paper we adapt the standard algorithm for computing limit average cost of a weighted transition system to software product lines. Limit average is a useful and popular measure for the long-term average behavior of a quality attribute such as performance or energy consumption, but has hitherto not been available for family-based analysis of software product lines. Our algorithm operates on weighted featured transition systems, at a symbolic level, and computes limit average cost for all products in a software product line at the same time. We have implemented the algorithm and evaluated it on several examples

    Photometric Selection of QSO Candidates From GALEX Sources

    Get PDF
    We present a catalog of 36,120 QSO candidates from the Galaxy Evolution Explorer (GALEX) Release Two (GR2) UV catalog and the USNO-A2.0 optical catalog. The selection criteria are established using known quasars from the Sloan Digital Sky Survey (SDSS). The SDSS sample is then used to assign individual probabilities to our GALEX-USNO candidates. The mean probability is ~50%, and would rise to ~65% if better morphological information than that from USNO were available to eliminate galaxies. The sample is ~40% complete for i<=19.1. Candidates are cross-identified in 2MASS, FIRST, SDSS, and XMM-Newton Slewing Survey (XMMSL1), whenever such counterparts exist. The present catalog covers the 8000 square degrees of GR2 lying above 25 degrees Galactic latitude, but can be extended to all 24,000 square degress that satisfy this criterion as new GALEX data become available.Comment: AASTeX v5.2, 31 pages, 9 figures. Accepted for publication in ApJ. Extended tables available in the online edition of the journa

    PROTEIN SYNTHESIS BY THE CHLOROPLASTS OF ACETABULARIA MEDITERRANEA

    Get PDF

    Southern Cosmology Survey III: QSO's from Combined GALEX and Optical Photometry

    Full text link
    We present catalogs of QSO candidates selected using photometry from GALEX combined with SDSS in the Stripe 82 region and Blanco Cosmology Survey (BCS) near declination -55 degrees. The SDSS region contains ~700 objects with magnitude i < 20 and ~3600 objects with i < 21.5 in a ~60 square degree sky region, while the BCS region contains ~280 objects with magnitude i < 20 and ~2000 objects with i < 21.5 for a 11 square degree sky region that is being observed by three current microwave Sunyaev-Zeldovich surveys. Our QSO catalog is the first one in the BCS region. Deep GALEX exposures (~2000 seconds in FUV and NUV, except in three fields) provide high signal-to-noise photometry in the GALEX bands (FUV, NUV < 24.5 mag). From this data, we select QSO candidates using only GALEX and optical r-band photometry, using the method given by Atlee and Gould (2008). In the Stripe 82 field, 60% (30%) of the GALEX selected QSO's with optical magnitude i<20 (i<21.5) also appear in the Richards et al. (2008) QSO catalog constructed using 5-band optical SDSS photometry. Comparison with the same catalog by Richards et al. shows that the completeness of the sample is approximately 40%(25%). However, for regions of the sky with very low dust extinction, like the BCS 23hr field and the Stripe 82 between 0 and 10 degrees in RA, our completeness is close to 95%, demonstrating that deep GALEX observations are almost as efficient as multi-wavelength observations at finding QSO's. GALEX observations thus provide a viable alternate route to QSO catalogs in sky regions where u-band optical photometry is not available. The full catalog is available at http://www.ice.csic.es/personal/jimenez/PHOTOZComment: Submitted to ApJ

    Improving Photometric Redshifts using GALEX Observations for the SDSS Stripe 82 and the Next Generation of SZ Cluster Surveys

    Get PDF
    Four large-area Sunyaev-Zeldovich (SZ) experiments -- APEX-SZ, SPT, ACT, and Planck -- promise to detect clusters of galaxies through the distortion of Cosmic Microwave Background photons by hot (> 10^6 K) cluster gas (the SZ effect) over thousands of square degrees. A large observational follow-up effort to obtain redshifts for these SZ-detected clusters is under way. Given the large area covered by these surveys, most of the redshifts will be obtained via the photometric redshift (photo-z) technique. Here we demonstrate, in an application using ~3000 SDSS stripe 82 galaxies with r<20, how the addition of GALEX photometry (FUV, NUV) greatly improves the photometric redshifts of galaxies obtained with optical griz or ugriz photometry. In the case where large spectroscopic training sets are available, empirical neural-network-based techniques (e.g., ANNz) can yield a photo-z scatter of σz=0.018(1+z)\sigma_z = 0.018 (1+z). If large spectroscopic training sets are not available, the addition of GALEX data makes possible the use simple maximum likelihood techniques, without resorting to Bayesian priors, and obtains σz=0.04(1+z)\sigma_z=0.04(1+z), accuracy that approaches the accuracy obtained using spectroscopic training of neural networks on ugriz observations. This improvement is especially notable for blue galaxies. To achieve these results, we have developed a new set of high resolution spectral templates based on physical information about the star formation history of galaxies. We envision these templates to be useful for the next generation of photo-z applications. We make our spectral templates and new photo-z catalogs available to the community at http://www.ice.csic.es/personal/jimenez/PHOTOZ .Comment: 10 pages, 8 figure

    Big-Step Semantics

    Get PDF
    With the popularity of model-driven methodologies, and the abundance of modelling languages, a major question for a requirements engineer is: which language is suitable for modelling a system under study? We address this question from a semantic point-of-view for big-step modelling languages (BSMLs). BSMLs are a popular class of behavioural modelling languages in which a model can respond to an environmental input by executing multiple, possibly concurrent, transitions. We deconstruct the semantics of a large class of BSMLs into high-level, orthogonal semantic aspects and discuss the relative advantages and disadvantages of the semantic options for each of these aspects to allow a requirements engineer to compare and choose the right BSML. We accompany our presentation with many modelling examples that illustrate the differences between a set of relevant semantic options.

    The Mass of the Black Hole in the Quasar PG 2130+099

    Get PDF
    We present the results of a recent reverberation-mapping campaign undertaken to improve measurements of the radius of the broad line region and the central black hole mass of the quasar PG 2130+099. Cross correlation of the 5100 angstrom continuum and H-beta emission-line light curves yields a time lag of 22.9 (+4.4 - 4.3) days, corresponding to a central black hole mass MBH= 3.8 (+/- 1.5) x 10^7 Msun. This value supports the notion that previous measurements yielded an incorrect lag. We re-analyzed previous datasets to investigate the possible sources of the discrepancy and conclude that previous measurement errors were apparently caused by a combination of undersampling of the light curves and long-term secular changes in the H-beta emission-line equivalent width. With our new measurements, PG 2130+099 is no longer an outlier in either the R-L or the MBH-Sigma relationships.Comment: 21 pages, 7 figures; Accepted for publication in Ap
    corecore