15 research outputs found

    Profiling of bacterial assemblages in the marine cage farm environment, with implications on fish, human and ecosystem health

    No full text
    This research presents a comprehensive study of bacterial assemblages within the water column and in the surface sediments in the zone of two European sea bass cage farms. By the application of the high-throughput amplicon sequencing of 16S rRNA gene, and further implementing microbial ecology tools, a bacterial segment from cage culturing systems and their respective controls were analyzed, with special reference to potential impact on animal, human and environmental health. Samples of seawater and sediments were collected seasonally, at locations situated in the central and southern Adriatic Sea. Bacterial composition was significantly different in the seawater vs. sediment. No significant differences in alpha diversity in sediments were indicated between aquaculture and control sites, and it appears that it is not affected by farming practices. Control sediments have higher relative abundance of aerobic and facultative anaerobic bacteria, while aquaculture sediments are markedly anaerobic. Sediments largely contain functional groups for respiration of sulfate and sulfur compounds, though doubly more in aquaculture sites. Seasonal groupings of bacterial assemblages were confirmed in the seawater, with higher relative abundance of known aquaculture pathogens (except Photobacterium in the winter samples) detected in the winter and summer, opposed to other two seasons. Rare taxa were analyzed in the sediment and in the water column in the search for known fish pathogens, with five genera detected: Vibrio, Pseudomonas, Photobacterium, Tenacibaculum and Mycobacterium. Biomarkers important for the impact of aquaculture on the environment were identified, e.g. Blastopirullela, Sva0081, Suflurovum, Spirochaeta 2, etc., as well as human and fish potential pathogens: Vibrio ichtyoentery, V. harvey, Acinetobacter lwoffi, A. johnsonii, Clostridium perfringens, etc. Chemoheterotrophy has emerged as the dominant functional group in both environments. Regarding priorities for aquaculture microbial management, seawater seems to contain a higher percentage of taxa connected to health-related functional groups

    Profiling of bacterial assemblages in the marine cage farm environment, with implications on fish, human and ecosystem health

    No full text
    This research presents a comprehensive study of bacterial assemblages within the water column and in the surface sediments in the zone of two European sea bass cage farms. By the application of the high-throughput amplicon sequencing of 16S rRNA gene, and further implementing microbial ecology tools, a bacterial segment from cage culturing systems and their respective controls were analyzed, with special reference to potential impact on animal, human and environmental health. Samples of seawater and sediments were collected seasonally, at locations situated in the central and southern Adriatic Sea. Bacterial composition was significantly different in the seawater vs. sediment. No significant differences in alpha diversity in sediments were indicated between aquaculture and control sites, and it appears that it is not affected by farming practices. Control sediments have higher relative abundance of aerobic and facultative anaerobic bacteria, while aquaculture sediments are markedly anaerobic. Sediments largely contain functional groups for respiration of sulfate and sulfur compounds, though doubly more in aquaculture sites. Seasonal groupings of bacterial assemblages were confirmed in the seawater, with higher relative abundance of known aquaculture pathogens (except Photobacterium in the winter samples) detected in the winter and summer, opposed to other two seasons. Rare taxa were analyzed in the sediment and in the water column in the search for known fish pathogens, with five genera detected: Vibrio, Pseudomonas, Photobacterium, Tenacibaculum and Mycobacterium. Biomarkers important for the impact of aquaculture on the environment were identified, e.g. Blastopirullela, Sva0081, Suflurovum, Spirochaeta 2, etc., as well as human and fish potential pathogens: Vibrio ichtyoentery, V. harvey, Acinetobacter lwoffi, A. johnsonii, Clostridium perfringens, etc. Chemoheterotrophy has emerged as the dominant functional group in both environments. Regarding priorities for aquaculture microbial management, seawater seems to contain a higher percentage of taxa connected to health-related functional groups

    New Trends in Important Diseases Affecting the Culture of Fish and Molluscs in the ICES Area 2002– 2015

    Get PDF
    The ICES Working Group on Pathology and Diseases of Marine Organisms (WGPDMO) provides annual reviews of national reports on the disease status of wild and farmed fish and molluscs in the ICES area. In 2004, the group published a first report collating this information from 1998-2002. This second report aims to provide an update on the status of the major diseases described in the original report and also to provide an overview of new diseases which have emerged since the previous report was published

    Miljøkonsekvensanalyse: Integrert havbruk i Norge. September 2017

    Get PDF
    KUNNSKAPSBEHOV FOR FORVALTNING AV IMTA Integrert multitrofisk akvakultur (IMTA, eller bare integrert havbruk) innebærer samdyrking av flere arter fra ulike nivå i næringskjeden (flere trofiske nivå). Dagens akvakultur i Norge består i hovedsak av monokultur med fôret fisk. Et balansert integrert system fungerer mer som et naturlig økosystem der overskuddsnæring fra for eksempel fôret laks fungerer som naturlig gjødsel eller mat for artene lenger ned i næringskjeden (lavtrofiske arter), for eksempel blåskjell, tang og tare (makroalger), kråkeboller eller sjøpølser. Kompleksiteten i IMTA-anlegget vil avhenge av hvor mange forskjellige arter som dyrkes. De potensielle miljøgevinstene ved å dyrke lavtrofiske arter i sammenheng med produksjon av fôret fisk i integrerte havbrukssystem er mange. For norsk akvakulturnæring vil innføring av IMTA kunne innebære redusert miljøpåvirkning og samtidig økt ressurseffektivitet og økt biomasseproduksjon uten tilsetning av mer energi i form av fôr. I et større perspektiv vil økt dyrkning av marin biomasse i form av makroalger kunne ha en positiv klimaeffekt. Makroalger fanger karbon når de vokser og økt produksjon vil kunne gi mer klimavennlig biomasse til mat, fôrråvarer og fornybar energi. Slik lovverket for havbruk er bygd opp i dag, er det ikke et eget regelverk for integrert havbruk. All form for havbruksaktivitet faller under akvakulturloven. Videre faller tillatelser for produksjon av laks, ørret og regnbueørret under Laksetildelingsforskriften, mens andre fiskearter, bløtdyr, krepsdyr og pigghuder faller under Tildelingsforskriften for andre arter. Algedyrking omfattes altså også av akvakulturloven, men har ingen egen tildelingsforskrift. Søknader for dyrking av makroalger behandles per i dag separat i Nærings- og Fiskeridepartementet. Basert på «skjønnsmessig» vurdering gis tillatelser i de tilfeller det er sannsynlig at algedyrkningen er miljømessig forsvarlig. Ved oppstart av et IMTA-anlegg med laks, blåskjell og tare må søker gjennom tre separate søknadsprosesser. Ettersom mulighetsrommet ved overgang fra dagens monokultur til kommersiell skala integrert havbruk er stort, og har store potensielle miljøfordeler, er en slik utvikling ønskelig. Det er samtidig helt avgjørende at forvaltningen av integrert havbruk baseres på kunnskap for å sikre at en slik utvikling skjer innenfor miljøets bæreevne. Bellona har derfor initiert et utredningsarbeid og invitert de relevante fagmiljø i Norge til å bidra i utformingen av et kunnskapsgrunnlag om mulige effekter av kommersiell skala integrert havbruk. Utredningen er utformet som en teoretisk miljøkonsekvensanalyse der man evaluerer positive og negative effekter på havmiljøet som må ivaretas i et regelverk og som et godt grunnlag for beslutningstagere. Et slikt faglig grunnlag vil både bidra til en mer miljømessig forsvarlig beslutning samt en raskere saksgang. Videre vil en slik kartlegging kunne ha avgjørende betydning for å stimulere til mer bærekraftig havbruk internasjonalt. Utredningsarbeidet er betalt av Nærings- og Fiskeridepartementet og Fiskeri- og Havbruksnæringens Forskningsfond.Nærings- og Fiskeridepartementet og Fiskeri- og Havbruksnæringens Forskningsfond.publishedVersio

    AQUAHEALTH: Physiochemical parameters and Vibrio spp. abundance in water samples gathered in the Adriatic Sea

    No full text
    The genus Vibrio includes > 60 species that are autochthonous and ubiquitous aquatic microorganisms, members of the bacterial community in marine environments worldwide. Given their impact on human and animal health and the relative ease of their cultivation, Vibrio species have been well studied: the genus includes human and animal pathogens that have caused major diseases around the world (e.g. cholera or vibriosis). The dataset contains Vibrio spp. abundance and measurements of environmental parameters (temperature, salinity, total dissolved solids, pH, dissolved oxygen, total nitrogen, total phosphorus, total particulate matter, particulate organic matter and particulate inorganic matter), gathered at Mali Ston Bay in the Adriatic Sea. Water sampling was conducted at two locations: a floating cage fish farm (located near small island Maslinovac) and a control site (near island Pučenjak) at different depths (0.5 m, 5 m, 10 m and 18 m). The sampling period covers seasonal measurements between 2016 and 2019
    corecore