134 research outputs found

    Experimental validation of a new biphasic model of the contact mechanics of the porcine hip

    Get PDF
    Hip models that incorporate the biphasic behaviour of articular cartilage can improve understanding of the joint function, pathology of joint degeneration and effect of potential interventions. The aim of this study was to develop a specimen-specific biphasic finite element model of a porcine acetabulum incorporating a biphasic representation of the articular cartilage and to validate the model predictions against direct experimental measurements of the contact area in the same specimen. Additionally, the effect of using a different tension-compression behaviour for the solid phase of the articular cartilage was investigated. The model represented different radial clearances and load magnitudes. The comparison of the finite element predictions and the experimental measurement showed good agreement in the location, size and shape of the contact area, and a similar trend in the relationship between contact area and load was observed. There was, however, a deviation of over 30% in the magnitude of the contact area, which might be due to experimental limitations or to simplifications in the material constitutive relationships used. In comparison with the isotropic solid phase model, the tension-compression solid phase model had better agreement with the experimental observations. The findings provide some confidence that the new biphasic methodology for modelling the cartilage is able to predict the contact mechanics of the hip joint. The validation provides a foundation for future subject-specific studies of the human hip using a biphasic cartilage model

    Biphasic investigation of contact mechanics in natural human hips during activities

    Get PDF
    The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities

    Poro-mechanical analysis of a biomimetic scaffold for osteochondral defects

    Get PDF
    Osteochondral defects are focal areas of damage involving articular cartilage and sub-chondral bone. Tissue engineering scaffolds are used to improve the organism regeneration ability for this kind of injury, serving as biocompatible structures for cell viability and differentiation. Since biomechanical cues such as substrate stiffness, loading conditions and fluid permeation are fundamental for successful tissue repair, understanding how these features vary in the scaffold is of primary importance. Here we present a mathematical model based on porous media mechanics for the analysis of a tissue engineering scaffold. We consider a three-layered scaffold mimicking a complete osteochondral tissue and vary the mechanical properties of the intermediate layer over a physiological range. Our results show that the interstitial fluid pressure and the vertical component of the solid effective stress depend significantly on the stiffness and permeability of the intermediate layer under mechanical loading. By properly tuning these material properties, regimes of slow or fast temporal variations of mechanical stress can be obtained in the scaffold layer of interest

    A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter

    Get PDF
    A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time- dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition

    A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling

    Get PDF
    Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms

    Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading

    Get PDF
    The aim was to assess the role of the composition changes in the pericellular matrix (PCM) for the chondrocyte deformation. For that, a three-dimensional finite element model with depth-dependent collagen density, fluid fraction, fixed charge density and collagen architecture, including parallel planes representing the split-lines, was created to model the extracellular matrix (ECM). The PCM was constructed similarly as the ECM, but the collagen fibrils were oriented parallel to the chondrocyte surfaces. The chondrocytes were modelled as poroelastic with swelling properties. Deformation behaviour of the cells was studied under 15% static compression. Due to the depth-dependent structure and composition of cartilage, axial cell strains were highly depth-dependent. An increase in the collagen content and fluid fraction in the PCMs increased the lateral cell strains, while an increase in the fixed charge density induced an inverse behaviour. Axial cell strains were only slightly affected by the changes in PCM composition. We conclude that the PCM composition plays a significant role in the deformation behaviour of chondrocytes, possibly modulating cartilage development, adaptation and degeneration. The development of cartilage repair materials could benefit from this information
    corecore