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Abstract We construct a stabilized finite-element method
to compute flow and finite-strain deformations in an incom-
pressible poroelasticmedium.We employ a three-fieldmixed
formulation to calculate displacement, fluid flux and pres-
sure directly and introduce a Lagrange multiplier to enforce
flux boundary conditions.We use a low order approximation,
namely, continuous piecewise-linear approximation for the
displacements and fluid flux, and piecewise-constant approx-
imation for the pressure. This results in a simple matrix
structure with low bandwidth. The method is stable in both
the limiting cases of small and large permeability. Moreover,
the discontinuous pressure space enables efficient approx-
imation of steep gradients such as those occurring due to
rapidly changing material coefficients or boundary condi-
tions, both of which are commonly seen in physical and
biological applications.
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1 Introduction

Poroelasticity theory assumes a superposition of solid and
fluid components to capture complex interactions between a
deformable porous medium and the fluid flow within it, and
was originally developed to study geophysical applications
such as reservoir geomechanics [26,28,41]. Fully saturated,
incompressible poroelastic models have since been used to
model a variety of biological tissues and processes. Biologi-
cal examples include the coupling of flow in coronary vessels
with the mechanical deformation of myocardial tissue to cre-
ate a poroelastic model of coronary perfusion [13,15]. Other
examples include modelling tissue deformation and the ven-
tilation in the lungs [6], protein-based hydrogels embedded
within cells [22], brain oedema and hydrocephalus [39,56],
microcirculation of blood and interstitial fluid in the liver lob-
ule [36], and interstitial fluid and tissue in articular cartilage
and intervertebral discs [21,24,42].

When using the finite element method to solve the poroe-
lastic equations the main challenge is to ensure convergence
of the method and prevent numerical instabilities that often
manifest themselves in the form of spurious oscillations in
the pressure field. It has been suggested that this problem is
caused by the saddle point structure in the coupled equations
resulting in a violation of the famous Ladyzhenskaya–
Babuska–Brezzi (LBB) condition, thus highlighting the need
for a stable combination of mixed finite elements [23].

In addition, there is a need formethods that do not give rise
to localised pressure oscillations when seeking to approxi-
mate steep pressure gradients in the solution. For example,
when modelling the diseased lung, abrupt changes in tissue
properties and heterogeneous airway narrowing are possible.
This can result in a patchy ventilation and pressure distribu-
tion [51]. In this situation methods that solve the poroelastic
equations using a continuous pressure approximation strug-

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206524217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-017-1381-8&domain=pdf


52 Comput Mech (2017) 60:51–68

gle to capture the steep gradients in pressure and produce
localised oscillations in the pressure [46]. Steep pressure
gradients can also result from imposed Dirichlet pressure
boundary conditions such as those in Terzaghi’s problem
[43,54]. Themethod presented here is able to overcome these
types of pressure instability.

1.1 Two variable versus three variable formulations

The linear (infinitesimal strain) poroelastic equations are
often solved in a displacement and pressure formulation
from which the fluid flux can be recovered [43,54]. The
stability and convergence of this displacement and pressure
(u/p) formulation was analysed in [43] and error bounds
for inf-sup stable combinations of finite element spaces (e.g.
Taylor-Hood elements)were obtained. In the currentworkwe
maintain the fluid flux as a variable, resulting in a three-field,
displacement, fluid flux and pressure formulation. Retaining
the fluid flux as a primary variable has the following advan-
tages.

1. It allows for greater accuracy in the fluid velocity field.
This can be of particular interest when a poroelastic
model is coupled with an advection diffusion equation,
e.g., to account for gas exchange, thermal effects, con-
taminant transport or the transport of nutrients or drugs
within a porous tissue [30].

2. Physicallymeaningful boundary conditions canbe applied
at the interface when modelling the interaction between
a fluid and a poroelastic structure [5].

3. It allows for an easy extension of the fluid model from a
Darcy to a Brinkman flow model, for which there are
numerous applications in modelling biological tissues
[30].

4. It avoids the calculation of the fluid flux in post-
processing.

A clear disadvantage of a three-field formulation is the
increased number of degrees of freedom of the linear system
arising from the FEM discretisation, although this difficulty
is mitigated with the proposed element, see comment 7 in
§1.4.

1.2 Previous results: infinitesimal strain

Error estimates for finite element solutions of the lin-
ear three-field problem, using continuous piecewise linear
approximations for displacements and mixed low-order
Raviart–Thomas elements for the fluid flux and pressure vari-
ables, are presented in [44,45]. However this method was
found to be susceptible to spurious pressure oscillations [47].
In an effort to overcome these pressure oscillations, a discon-
tinuous linear three-field method was analysed in [38] with

moderate success, and a linear non-conforming three-field
method was analysed in [58]. However no implementation
of these methods in 3D has yet been presented.

Due to the size of the discrete systems resulting from
a three field approach, there has been considerable work
on operating splitting (iterative) approaches in which the
poroelastic equations are separated into a fluid problem
and deformation problem [19,28,32,53]. These methods
are often able to take advantage of existing finite element
software for elasticity and fluid flow. Matrix assembly for
discontinuous and non-conforming finite elements in 3D can
be complicated and calculating stresses using these methods
can be particularly challenging. Methods that use standard
and simple to implement elements are very appealing [55].
In [28], a linear three-fieldmixed finite elementmethod using
lowest order Raviart–Thomas elements was shown to over-
come Dirichlet boundary type pressure instabilities.

The finite volume method has been used by [31,32] to
discretize theflow.This results in a discontinuous approxima-
tion of the fluid pressure which is able to overcome localised
pressure oscillations due to steep pressure gradients in the
solution.

Introducing a displacement stress field, e.g. see [49],
reduces the regularity requirements on the displacement field,
thereby allowing for the implementation of a four-field con-
forming Raviart–Thomas element, but consequently greatly
increasing the overall size and complexity of the problem.

1.3 Previous results: finite strain

Monolithic approaches for solving the quasi-static two-field
incompressible finite-strain deformation equations are out-
lined in [1]. Two different approaches are advocated, a
mixed-penalty formulation, in which the continuity condi-
tion is imposed using a penalty approach, and a mixed solid
velocity–pressure formulation, where the linear momen-
tum for the fluid is used to eliminate the fluid velocity in
the remaining equations. The solid velocity–pressure for-
mulation is similar to the commonly used reduced (u/p)
formulation in [4]. Two-field formulations require a stable
mixed element pair such as the popular Taylor-Hood element
to satisfy the LBB inf-sup stability requirement. However,
using a continuous pressure element means that jumps in
material coefficients may introduce large solution gradients
across the interface, requiring severemesh refinement or fail-
ing to reliably capture jumps in the pressure solution [54].
An operator splitting (iterative) approach for a near incom-
pressible model is described by [13].

A three-field (displacement, fluid flux, pressure) formula-
tion has been outlined in [37], however this method uses a
low-order mixed finite element approximation without any
stabilisation and therefore is not inf-sup stable. A three-field
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finite element using a continuous pressure approximation has
been implemented in [52].

For both two-field and three-fields formulations and for
any choices of finite element, implementation, construction
and linearization of the nonlinear equations and convergence
of the nonlinear mechanics problem using Newton’s method
or other iterative procedure is also nontrivial [50].

1.4 Contributions of the current work

In [7],wedeveloped a stabilized, low-order, three-fieldmixed
finite element method for the fully saturated, incompressible,
small deformation case for which a linearly elastic model is
sufficient. Low-order finite element methods are relatively
easy to implement and allow for efficient preconditioning
[20,27,55]. Rigorous theoretical results for the stability and
optimal convergence rate for linear poroelasticity were pre-
sented in [7]. The stabilization term requires only a small
amount of additional computational work and can be assem-
bled locally on each element using standard finite element
information, leading to a symmetric addition to the original
system matrix and preserving any existing symmetry. The
effect of the stabilization on the conservation of mass is min-
imal in 3D, and decreases as the mesh is refined, see [7].

In the current work we present a monolithic mixed finite
element method to solve the fully incompressible three-field
finite-strain poroelasticity equations. We use a low order
approximation, namely, continuous piecewise-linear approx-
imation for the displacements and fluid flux, and piecewise-
constant approximation for the pressure. The finite-strain
case is a non-trivial extension of the infinitestimal-strain
implementation and requires several challenges to be over-
come including: (1) problem formulation and construction
of the weak equations, (2) accurate integration over the
deformed domain, (3) linearization of the weak equations,
(4) construction and convergence of a Quasi-Newton itera-
tion, and (5) time step selection. The main contributions of
this work are therefore as follows.

1. A method to solve finite-strain fully incompressible
poroelasticity using a stabilized discontinuous pressure
approximation. [Note that for the linear (infinitesimal
strain) equations other methods that use a discontinuous
pressure approximation have been previously presented
[7,28,38,58].]

2. A method for finite-strain fully incompressible poroelas-
ticity that is both inf-sup stable and is able to overcome
localized pressure oscillations.

3. A finite element method that is robust within all mod-
elling regimes. Large differences in permeability within
the computational domain can result in regions in which
Darcy flow dominates over elastic effects and regions in
which elastic effects are dominant. This low-order ele-

ment is reliable in both scenarios, providing an effective
numerical approach for problems in which heterogeneity
presents computational challenges.

4. A finite element method that results in a discrete system
with blocks arising from simple linear finite elements
allowing fast solver approaches and preconditioning
techniques to be easily implemented.

5. A finite element method for a finite-strain poroelas-
tic model that resolves steep pressure gradients without
localized oscillations.

We present a quasi-static finite-strain incompressible
poroelastic model in Sect. 2 and develop the stabilized
nonlinear finite-element method in Sect. 3. Implementation
details are provided in Sect. 4 and in the appendices. In Sect.
5, we present a range of numerical experiments to verify the
accuracy of the method and to demonstrate its ability to reli-
ably capture steep pressure gradients.

2 Poroelasticity theory

Two complementary approaches have been developed for
modelling a deformable porousmedium.Mixture theory, also
known as the Theory of Porous Media (TPM) [8,10,11], has
its roots in the classical theories of gas mixtures and makes
use of a volume fraction concept inwhich the porousmedium
is represented by spatially superposed interacting media. An
alternative, purely macroscopic approach is mainly associ-
ated with the work of Biot. A comprehensive development
of the macroscopic theory appears in [16]. Relationships
between the two theories are explored in [14,17]. As is most
common inbiological applications,weuse themixture theory
for poroelasticity as outlined in [8] and recently summarized
in [52].

2.1 Kinematics

Let the volume Ω(0) be the undeformed Lagrangian (mate-
rial) reference configuration and let X indicate the position
of a particle in Ω(0) at t = 0. The position of a particle
in the deformed configuration Ω(t) at time t > 0 is given
by x, with x = χ(X, t) as shown in Fig. 1. The deforma-
tion map, χ(X, t), is a continuously differentiable, invertible
mapping from Ω(0) to Ω(t). Thus the inverse of the defor-
mation map, χ−1(x, t), is such that X = χ−1(x, t). The
displacement field is given by

u(X, t) = χ(X, t) − X . (1)

The deformation gradient tensor is

F = ∂χ(X, t)

∂X
, (2)
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Fig. 1 Illustration of the solid
deformation

χ(X , t)

X x = χ(X, t)

Ω(0) Ω(t)

p(X, t) p(x, t)

and the symmetric right Cauchy–Green deformation tensor
is

C = FT F. (3)

The Jacobian is defined as

J = det(F), (4)

and represents the change in an infinitesimal control volume
from the reference to the current configuration, i.e.,

dΩ(t) = JdΩ(0). (5)

Note that J > 0.

2.2 Volume fractions

We will only consider saturated porous media in which the
fluid accounts for volume fractions φ0(X, t = 0) and φ(x, t)
of the total volume in the reference and current configura-
tions respectively, where φ is known as the porosity, defined
through the Jacobian of the deformation (7). The fractions
for the solid (or skeleton) are therefore 1 − φ0 and 1 − φ in
the reference and current configuration, respectively. For the
mixture, ρ is the density in the current configuration given
by

ρ = ρs(1 − φ) + ρ f φ in Ω(t), (6)

where ρs and ρ f are the densities of the fluid and solid,
respectively. We assume that both the solid and the fluid are
incompressible so that ρs = ρs

0 and ρ f = ρ
f
0 . Although

both the solid and fluid are assumed to be incompressible, the
control volume can expand or contract due to fluid entering
or leaving the region, and

J = 1 − φ0

1 − φ
. (7)

2.3 The model

We define the boundary ∂Ω(t) = Γd(t)∪Γn(t) for the mix-
ture and ∂Ω(t) = Γp(t)∪Γ f (t) for the fluid,with an outward
pointing unit normal n. We seek deformation χ(X, t), fluid
flux z(x, t) and pressure p(x, t) such that

−∇ · (σ e − p I) = ρ f

k−1z + ∇ p = ρ f f

∇ · (χ t + z) = g

χ(X, t)|X=χ−1(x,t) = X + uD

(σ e − p I)n = tN
z · n = qD

p = pD

χ(X, 0) = X

in Ω(t),

in Ω(t),

in Ω(t),

on Γd(t),

on Γn(t),

on Γ f (t),

on Γp(t),

in Ω(0).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

The fluid flux z = φ(v f − vs) where v f and vs are the
velocities of the fluid and solid components respectively, χ t
denotes ∂χ(X,t)

∂t , uD, qD, pD are given boundary conditions,
f is a general external body force, g is a general source or
sink term and σ e is the stress tensor given by

σ e = 1

J
F · 2∂W (C)

∂C
· FT , (9)

where W (C), with C = FT F, denotes a strain-energy law
(hyperelastic Helmholtz energy functional) dependent on the
deformation of the solid. The permeability tensor is given by

k = J−1Fk0(C)FT , (10)

where k0(C) is the permeability in the reference configura-
tion, which may be chosen to be some (nonlinear) function
dependent on the deformation. Examples of deformation
dependent permeability tensors for biological tissues can be
found in [24,34,35]. Details of the derivation of (8) appear
in “Appendix 1”.

It is important to recognize that ∇(·) = ∂/∂x(·) denotes
the partial derivative with respect to the deformed configura-
tion. We will use ∇ to denote the spatial gradient in Ω(t)
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rather than the more explicit ∇x=χ(X,t). The latter more
clearly indicates the dependency of the gradient operator on
the deformation χ(X, t) and highlights the inherent nonlin-
earity that arises due to the fact that the deformation χ(X, t)
is one of the unknowns. Similarly the deformed domainΩ(t)
in which equations (8) pertain, is a function of the deforma-
tion map χ , and therefore incorporates another important
nonlinearity.

3 The stabilized finite element method

We extend the method of [7] from the linear, small deforma-
tion poroelastic case to finite-strain poroelasticity. For ease

of presentation, we will assume all Dirichlet boundary con-
ditions are homogeneous, ie., uD = 0, qD = 0, pD = 0.

3.1 Weak formulation

We respectively define the following spaces for the deformed
location, fluid flux and pressure,

WE (Ω(t)) = {v ∈ (H1(Ω(t)))d : v = 0 on Γd(t)},
WD(Ω(t)) = {w ∈ Hdiv(Ω(t)) : w · n = 0 on Γ f (t)},

L(Ω(t)) =
{
L2(Ω(t)) if Γn(t) ∪ Γp(t) �= ∅
L2
0(Ω(t)) if Γn(t) ∪ Γp(t) = ∅,

}

,

where L2
0(Ω(t)) =

{
q ∈ L2(Ω(t)) : ∫

Ω(t) q dΩ(t) = 0
}
.

The continuous weak problem is: Find χ(X, t) ∈
WE (Ω(0)), z(x, t) ∈ WD(Ω(t)) and p(x, t) ∈ L(Ω(t))
for any time t ∈ [0, T ] such that

∫

Ω(t)

[
σ e : ∇Sv − p∇ · v

]
dΩ(t)

=
∫

Ω(t)
ρ f · v dΩ(t) +

∫

Γn(t)
tN · v dΓn(t)

∀v ∈ WE (Ω(t)),
∫

Ω(t)

[
k−1z · w − p∇ · w

]
dΩ(t)

=
∫

Ω(t)
ρ f f · w dΩ(t) ∀w ∈ WD(Ω(t)),

∫

Ω(t)

[
q∇ · χ t + q∇ · z] dΩ(t)

=
∫

Ω(t)
gq dΩ(t) ∀q ∈ L(Ω(t)). (11)

Here ∇Sv = 1
2

(∇v + (∇v)T
)
for some vector v.

3.2 The fully discrete model

Let T h be a quasi-uniform partition of Ω(t) into non-
overlapping elements K , where h denotes the size of the
largest element in T h . We then define the following finite
element spaces,

WE
h (Ω(t)) =

{
vh ∈ C0(Ω(t)) : vh |K ∈ P1(K ) ∀K ∈ T h, vh = 0 on Γd(t)

}
,

WD
h (Ω(t)) =

{
wh ∈ C0(Ω(t)) : wh |K ∈ P1(K ) ∀K ∈ T h,wh · n = 0 on Γ f (t)

}
,

Qh(Ω(t)) =
{{

qh : qh |K ∈ P0(K ) ∀K ∈ T h
}

if Γn(t) ∪ Γp(t) �= ∅{
qh : qh |K ∈ P0(K ),

∫

Ω(t) qh = 0 ∀K ∈ T h
}

if Γn(t) ∪ Γp(t) = ∅ ,

where P0(K ) and P1(K ) are the spaces of constant and linear
polynomials on K respectively.Wedefine the combined solu-
tion space Uh(t) = WE

h (Ω(0)) × WD
h (Ω(t)) × Qh(Ω(t)).

The discretization in time is given by partitioning [0, T ]
into N evenly spaced non-overlapping regions (tn−1, tn], n =
1, 2, . . . , N , where tn − tn−1 = Δt . For any sufficiently
smooth function v(t, x) we define vn(x) = v(tn, x) and the
discrete time derivative by vnΔt := vn−vn−1

Δt .
The fully discrete weak problem is: For n = 1, . . . , N ,

find χn
h ∈ WE

h (Ω(0)), znh ∈ WD
h (Ω(tn)) and pnh ∈

Qh(Ω(tn)) such that

∫

Ω(tn)

[
σ n
e,h : ∇Svh − pnh∇ · vh

]
dΩ(tn) (12)

=
∫

Ω(tn)
ρ f n · vh dΩ(tn)

+
∫

Γn(tn)
tnN · vh dΓn(tn) ∀vh ∈ WE

h (Ω(tn)),

∫

Ω(tn)

[
k−1znh · wh − pnh∇ · wh

]
dΩ(tn)

=
∫

Ω(tn)
ρ f f n · wh dΩ(tn) ∀wh ∈ WD

h (Ω(tn)),

∫

Ω(tn)

[
qh∇ · χn

h,Δt + qh∇ · znh
]
dΩ(tn) + J (pnh,Δt , qh)

=
∫

Ω(tn)
gnqh dΩ(tn) ∀qh ∈ Qh(Ω(tn)).
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The stabilization term is given by

J (p, q) = Υ
∑

K∈T h

∫

∂K\∂Ω(tn)
h∂K �p��q� ds,

where Υ is a stabilization parameter that is independent of h
and Δt . Here h∂K denotes the size (diameter) of an element
edge in 2D or face in 3D, and �·� is the jump across an edge
or face (taken on the interior edges only). The stabilization
term has been introduced here to add stability and ensure a
well-posed fully-discrete model. It has been shown that the
convergence is insensitive to Υ , e.g. see in [7,12,27] .

3.3 Solution via quasi-Newton iteration
at tn, n = 1, . . . , N .

Let unh = {χn
h, z

n
h, p

n
h } ∈ Uh(tn) denote the solution vec-

tor at a particular time step, δuh = {δv, δz, δp} denote the
solution increment vector, and vh = {vh,wh, qh} ∈ Vh(t)
where Vh(t) = WE

h (Ω(t)) × WD
h (Ω(t)) × Qh(Ω(t)). The

nonlinear system of Eq. (12) can be recast in the form: Find
unh ∈ Uh(tn) such that

Gn(unh, vh) = 0 ∀vh ∈ Vh(tn), (13)

where

Gn(unh , vh) =
∫

Ω(tn)

[
σ n
e,h : ∇Svh − pnh∇ · vh + k−1znh · wh

−pnh∇ · wh + qh∇ · (vnΔt,h + znh)

− ρ f n · vh + ρ f f n · wh + gqh
]
dΩ(tn)

−
∫

Γn(tn)
tnN · vh dΓn(tn). (14)

Given an approximate solution unh , we approximate (13) by

Gn(unh, vh) + DGn(unh, vh)[δuh] = 0 ∀vh ∈ Vh(tn),

and solve

DGn(unh, vh)[δuh] = −G(unh, vh) ∀vh ∈ Vh(tn), (15)

for the Newton step δuh , where DG is the directional deriva-
tive of G, at unh , in the direction δuh .

3.3.1 Approximation of DGn.

In biphasic tissue problems, it is common to approximate
directional derivative of G by assuming the nonlinear elas-
ticity term is the dominant nonlinearity and ignoring the other
nonlinearities [50,54]. Let

En((χn
h , pnh ), vh) =

∫

Ω(tn)

[
σ n
e,h : ∇Svh − pnh∇ · vh

]
dΩ(tn).

(16)

For Newton’s method we require the directional derivative
of En((χn

h, p
n
h), vh) at a particular trial solution (χn

h, p
n
h) in

the direction δχh , given by (see [57, section 3.5.3])

DEn((χn
h, p

n
h), vh)[δχh]

=
∫

Ω(tn)

[
∇Svh : �n

h : ∇Sδχh

+ σ n
e,h :

(
(∇δv)T · ∇vh

)]
dΩ(tn),

(17)

where �n
h is a fourth-order tensor and σ n

e,h is the effective

(elastic) stress tensor, both evaluated at a trial solution χn
h .

Further, any variable with a bar above it will correspond to
it being evaluated at a trial solution. The fourth-order spatial
tangent modulus tensor � is described in “Appendix 2”. For
a detailed explanation and derivation see [9,57]. The approx-
imate linearization of the nonlinear problem is thus given by

DGn(unh, vh)[δuh] ≈
∫

Ω(tn)

[
∇Svh : �n

h : ∇Sδχh

+ σ e,h :
(
(∇δχh)

T · ∇vh

)
− δph∇ · vh

+ k̄
−1

δzh · wh − δph∇ · wh

+ qh∇ ·
(

δχh

Δt
+ δzh

)]

dΩ(tn),

(18)

Using (14), (18) and Eq. (15) the Newton solve becomes:
Find δχh ∈ WE

h (Ω(0)), δzh ∈ WD
h (Ω(tn)) and δph ∈

Qh(Ω(tn)) such that

∫

Ω(tn)

[
∇Svh : �n

h : ∇Sδχh + σ n
e,h :

(
(∇δχh)T · ∇vh

)

− δph∇ · vh
]
dΩ(tn) (19)

=
∫

Ω(tn)

[
σ n
e,h : ∇Svh − pnh∇ · vh − ρ f n · vh

]
dΩ(tn)

−
∫

Γ n(tn)
tnN · vh dΓ n(tn) ∀vh ∈ WE

h (Ω(tn)),

∫

Ω(tn)

[
k̄
−1

δzh · wh − δph∇ · wh

]
dΩ(tn)

=
∫

Ω(tn)

[
k̄
−1

znh · wh − pnh · ∇wh − ρ f f n · wh

]
dΩ(tn)

∀wh ∈ WD
h (Ω(tn)),

∫

Ω(tn)

[

qh∇ ·
(

δχh

Δt
+ δzh

)]

dΩ(tn) + J

(
δph
Δt

, qh

)

=
∫

Ω(tn)

[
qh∇ · (χΔt,h + zh) − gqh

]
dΩ(tn)

+J
(
ph,Δt , qh

) ∀qh ∈ Qh(Ω(tn)).
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4 Implementation details

4.1 Matrix assembly for the Newton iteration

Let φk denote a vector-valued linear basis function for the
(P1)d space, and

χn
i =

nu∑

k=1

χn
i,kφk ∈ WE

h (Ω(0)),

zni =
nz∑

k=1

zni,kφk ∈ WD
h (Ω(tn)).

Similarly let ψi denote a basis function for the space P0,
hence

pni =
n p∑

k=1

pni,kψk ∈ Qh(Ω(tn)).

Now let uni := (χn
i , z

n
i , p

n
i ) ∈ R

nu+nz+n p denote the fully
discrete solution at the i th step within the Newton method at
time tn . The Newton algorithm at a particular time step n, is
given in Algorithm 1.

Algorithm 1 Newton algorithm at tn
i = 0
un0 = {χn−1, zn−1, pn−1}
while ||R(uni , u

n−1)|| > TOL & i < ITEMAX do
Assemble R(uni , u

n−1) and K (uni ) on Ω(tn)i
Solve K (uni )δu

n
i+1 = −R(uni , u

n−1)

Compute uni+1 = uni + δuni+1
Update the mesh, Ω(tn)i+1 = χn

i
i = i + 1

end while

At each Newton iteration we are required to solve the
linear system

K (uni )δu
n
i+1 = −R(uni , u

n−1). (20)

This system can be expanded as

⎡

⎣
K e 0 BT

0 M BT

−B −ΔtB J

⎤

⎦

⎡

⎣
δχn

i+1
δzni+1
δpni+1

⎤

⎦ = −
⎡

⎣
r1(χn

i , p
n
i )

r2(χn
i , z

n
i , p

n
i )

r3(χn
i , χ

n−1, zni , p
n
i )

⎤

⎦ ,

(21)

where the elements in the matrices in (21) are given by

kekl =
∫

Ω(tn)i

[
ET
k D(χn

i )El + (∇φk)
T σ e(χ

n
i )∇φl

]
dΩ(tn)i ,

mkl =
∫

Ω(tn)i
k−1(χn

i )φk · φl dΩ(tn)i ,

bkl = −
∫

Ω(tn)i
ψk∇ · φl dΩ(tn)i ,

jkl = Υ
∑

K∈T h
i

∫

∂K\∂Ω(tn )i
h∂K �ψk��ψl� ds.

r1i =
∫

Ω(tn)i

[(
σ e(χ

n
i ) − pni I

) : ∇φi − ρ(χn
i )φi · f

]
dΩ(tn)i

−
∫

Γn(tn)i
φi · tN (χn

i ) dΓn(tn)i ,

r2i =
∫

Ω(tn)i

[
k−1(χn

i )φi · zni − pni ∇ · φi − ρ f φi · f
]
dΩ(tn)i ,

r3i =
∫

Ω(tn)i
ψi
[∇ · (χn

i − χn−1)+ Δtψi∇ · zni −Δtψi g
]
dΩ(tn)i

+Υ
∑

K∈T h
i

∫

∂K\∂Ω(tn )i
h∂K �ψi ��p

n
i − pn−1� ds.

The saddle point systemgiven inEq. (21) can be iteratively
solved using similar approaches to those seen in [29,48],
where the action of the inverse of the preconditioner fun-
damentally requires only the inverse of the linear blocks Ke

and M . Details of the matrices D and E appear in “Appendix
2”. Note that the matrix equations are integrated in the
deformed configuration obtained from the previous Newton
step. This update Lagrangian approach overcomes complex
linearisation otherwise neededwhen using a total Lagrangian
approach [50]. The Newton iteration was found to be robust
with respect to the stabilization parameter. More precisely,
in all calculations fewer than four Newton iterations were
required independently of the size of the stabilization param-
eter. Tables 2 and 3 in Sect. 5.1 show theNewton convergence
for two choices of the stabilization parameter two orders of
magnitude apart for a 3D stress relaxation text problem. In
practice, the stabilization parameter was chosen so as to be
as small as possible without producing oscillations, unless
otherwise stated.

4.2 Stabilization matrix assembly

Let K ∈ Th be an element and D(K ) be the pressure degree
of freedom associated with element K . We define A(K ) to
be the set of elements L ∈ Th neighboring K .
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Algorithm 2 Stabilization matrix J assembly
for every K ∈ Th do
for every L ∈ A(K ) do
Calculate h∂K
i ← D(K )

j ← D(L)

J i i ← J i i + (δh∂K in 2D, δh3/2∂K in 3D)

J i j ← J i j − (δh∂K in 2D, δh3/2∂K in 3D)

end for
end for

4.3 Fluid-flux boundary condition

When solving the equations for Darcy flow using the
Raviart–Thomas element (RT-P0), the fluid-flux boundary
condition is enforced naturally by this divergence free ele-
ment. Unfortunately this is not possible using our proposed
P1-P1-P0-stabilized element. However, solving the poroelas-
tic equations (8) using a piecewise linear approximation for
the deformation and Raviart–Thomas element for the fluid
(P1-RT-P0) does not satisfy the discrete inf-sup condition
and can yield spurious pressure oscillations, see [46,47] for
details.

To enforce the flux boundary condition z · n = qD along
the boundary Γ f (t) we introduce a Lagrange multiplier Λh ,

where Λh ∈ W f
h (t), the discrete space of piecewise con-

stant functions defined on all element surfaces with non-zero
intersection with Γ f (t). The resulting modified continuous
weak-form is

G((χh, zh, ph), (vh,wh, qh))

+(Λh,wh · n)Γ f = 0, ∀(vh,wh, qh) ∈ Vh(t), (22)

(zh · n, l)Γ f = qD, ∀l ∈ W f
h (t). (23)

The discretization and implementation of this additional con-
straint is straightforward and results in a discrete systemwith
additional degrees of freedom for every node on Γ f . The
terms (Λh, w · n)Γ f and (z · n, l)Γ f are nonlinear since the
normal is a function of the (nonlinear) displacement. Note,
within all the simulations we have undertaken, we found that
treating these terms as linear terms did not prevent the con-
vergence of the Newton algorithm. Alternatively these terms
could be linearized as has been described in detail for the
traction boundary condition, see [57, section 4.2.5] and [4].

5 Numerical results

We present four numerical examples to test the performance
of the proposed stabilized finite element method. The first
two examples are biological and geomechanical applications
respectively, and the third is a swelling example that under-
goes significant, large deformations. For the implementation

we used the C++ library libmesh [33], and the multi-frontal
direct solver mumps [2] to solve the resulting linear systems.
For the strain energy lawwe chose a Neo-Hookean law taken
from [57, eqn. (3.119)], with the penalty term chosen such
that 0 ≤ φ < 1, namely

W (C) = μ

2
(tr(C) − 3) + λ

4
(J2 − 1) −

(

μ + λ

2

)

ln(J − 1+ φ0).

(24)

For further discussion of strain energy laws for porelasticity
we refer to [14] and [52]. The material parametersμ and λ in
(24) can be related to the Young’smodulus E and the Poisson
ratio ν by μ = E/(2(1 + ν)) and λ = (Eν)/((1 + ν)(1 −
2ν)). Details of the effective stress tensor and fourth-order
spatial tangent modulus for this particular law can be found
in “Appendix 2”. For the permeability law we chose

k0(C) = k0 I . (25)

5.1 3D unconfined compression problem

This first example tests the correctness of the implementation
by comparing the numerical solution of the finite-strain sys-
tem of equations to one of the very few available analytical
solutions for poroelastic problems, all-be-it for small defor-
mations. Similar unconfined compression problems have
been used to test other large deformation poroelastic soft-
ware such as FEBio [40]. A cylinder of poroelastic materials
is subjected to a prescribed displacement in the axial direc-
tion. Thematerial is allowed to relax in the radial direction by
constraining the fluid pressure to be zero at the outer radial
surface and assuming the outer radial boundary is perme-
able and free-draining. The upper and lower fluid boundaries
are assumed to be impermeable and frictionless. The orig-
inal experiment involved a specimen of articular cartilage
being compressed via impervious smooth plates as shown in
Fig. 2. Both the radius and height of the cylinder are 1 mm,
whereas the axial compression is 0.01 mm, hence the axial
compression is small compared to the size of the height of the
cylinder. Large deformation effects are therefore expected to
be negligible. The parameters used for the simulation can be
found in Table 1. All computations were performed using
3080 tetrahedral elements.

A closed-form axisymmetric solution for small strains [3]
is

u

a
(a, t) = ε0

⎡

⎣ν + (1 − 2ν)(1 − ν)

∞∑

n=1

exp
(
−α2

n
Mkt
a2

)

α2
n(1 − ν)2 − (1 − ν)

⎤

⎦ ,

(26)
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Impervious smooth plate

Specimen

Compression direction

Flow direction

Fig. 2 The 3D unconfined compression problem

Table 1 Parameters used for the 3D unconfined compression test prob-
lem

Parameter Description Value

φ0 Initial fluid volume fraction 0.9

k0 Dynamic permeability 10−3 m3 s kg−1

ν Poisson’s ratio 0.15

E Young’s modulus 1000 kgm−1 s−2

Δt Time step used in the simulation 4 s

T Final time of the simulation 1000 s

Υ Stabilization parameter 10−3

where u is the radial displacement, ε0 is the amplitude of the
applied axial strain and a is the radius of the cylinder. Here
αn are the solutions to the characteristic equation, given by
J1(x) − (1 − ν)x J0(x)/(1 − 2ν) = 0, where J0 and J1 are
Bessel functions. The characteristic time of diffusion tg is
given by tg = a2/Mk, where M = λ + 2μ is the P-wave
modulus of the elastic solid skeleton, k is the permeability.

For small axial compression the computed radial dis-
placement shown in Fig. 3 is in good agreement with the
analytical solution, indicating that the nonlinear poroelastic
model is accurate in the small strain limit. As the axial com-
pression becomes large, the numerical finite strain solution
departs from the analytical linear small deformation solution
as expected.

The effect of the stabilization parameter on the numerical
solution is investigated in Fig. 4, and shown to be robost for
a broad range of values, since the stabilization parameter can
be chosen to be very small in 3D. Without stabilization the
Newton method solving the non-linear equations diverged
rapidly due to spurious pressure modes present at each New-
ton step and a solution could not be obtained. Further tests
to investigate this type of loss of stability are given in Sect.
5.3.

Tables 2 and 3 illustrate convergence of the Newton iter-
ation for the unconfined compression problem for the first
time step (the most demanding due to the initial displace-
ment boundary condition), with Υ = 10−1 and Υ = 10−3,
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Unconfined compression relaxation test

Linear analytical solution
Numerical solution, 0=0.01

Numerical solution, 0=0.1

Numerical solution, 0=0.2

Fig. 3 The 3D unconfined compression problem. Normalized radial
displacement versus normalized time for vertical normalized displace-
ments ε0 = 0.01, 0.1, 0.2 compared to the analytical, infinitesimal
strain solution. All computations performed with Υ = 0.001
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Numerical solution, Υ=0.01
Numerical solution, Υ=0.1
Numerical solution, Υ=1

Fig. 4 The 3D unconfined compression problem. Normalized radial
displacement versus normalized time calculated using stabilized finite
element method for ε0 = 0.01 using various values of Υ and compared
to the analytical, infinitesimal strain solution

respectively. The Newton convergence is minimally affected
by the decrease in stabilization. The Newton iteration fails to
converge if the stabilization parameter is further reduced to
Υ = 10−6, and as a consequence no solution can be obtained.
The linear system contains 8162 degrees of freedom, takes
15.25 s to assemble and 1.57 s to solve, using one Intel Xenon
CPU.
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Table 2 Convergence of the Newton iteration for the 3D unconfined
compression problem with Υ = 10−1 at t = 4 s

Newton iteration ||uni − uni−1|| ||R(uni , u
n−1)||

1 0.81 0.023202

2 2.81699e−04 0.011276

3 6.93986e−08 1.34048e−06

4 4.10726e−10 7.64882e−09

Table 3 Convergence of the Newton iteration for the 3D unconfined
compression problem with Υ = 10−3 at t = 4 s

Newton iteration ||uni − uni−1|| ||R(uni , u
n−1)||

1 0.81 0.0235609

2 1.28528e−05 1.99541e−04

3 7.71658e−08 1.49304e−06

4 4.6844e−10 8.17681e−09

5.2 Terzaghi’s problem

Terzaghi’s problem is a common test problem within the
geomechanics community that has an analytical solution. It
has been used to investigate the origins of non-physical pres-
sure oscillations arising in some finite element solutions near
the boundary [43,54]. The domain consists of a porous col-
umn of unit height, bounded at the sides and bottom by rigid
and impermeable walls. The top is free to drain (pD = 0)
and has a downward traction force, p0, applied to it. The
boundary and initial conditions for this 1D problem can be
written as

tN = −p0,

u = 0,

u = 0,

z = 0

z = 0,

pD = 0

p = 0

for x = 0, t > 0

for x = 1, t > 0

for x ∈ [0, 1], t = 0.

(27)

The analytical pressure solution, in non-dimensional form
is given by

p∗(x, t) =
∞∑

n

2

π(n + 1/2)
sin(π(n + 1/2)x)

exp−π(n+1/2)(λ+2μ)kt . (28)

For a detailed explanation and derivation of this solution
see [16, section 5.2.2]. We discretized the column using 60
hexahedral elements and solved the problem using both the
stabilized low-order finite elementmethod and a higher-order
inf-sup stable finite element method with piecewise linear
pressure approximation. The material parameters used for
the simulation can be found in Table 4.

Table 4 Parameters used for Terzaghi’s problem

Parameter Description Value

φ0 Initial fluid volume fraction 0.9

k0 Dynamic permeability 10−5 m3 s kg−1

ν Poisson ratio 0.25

E Young’s modulus 100 kgm−1 s−2

Δt Time step used in the simulation 0.01 s

T Final time of the simulation 1 s

Υ Stabilization parameter 2 × 10−5

The simulation results of the pressure for the twomethods
at t = 0.01 s and t = 1 s are shown in Fig. 5. At t = 0.01 s
the piecewise linear (continuous) approximation, which is
inf-sup stabilizedusing aBrinkman term [18], fails to approx-
imate the thin boundary layer in the pressure field and suffers
fromovershooting (Fig. 5a). The stabilized low-ordermethod
does not suffer from this problem and accurately captures
the pressure field near the boundary (Fig. 5c). At t = 1 s
the boundary layer has grown and both the piecewise linear
pressure approximation (Fig. 5b) and the piecewise constant
pressure approximations (Fig. 5d) yield satisfactory results.
Note that even when using discontinuous pressure interpo-
lation, pressure oscillations are present without stabilization
at t = 0.01 s, see Fig. 5e. Again this pressure oscillation dis-
appears as the pressure boundary layer grows with time and
the lack of inf-sup stability is not obvious from the solution
at t = 1 s, see Fig. 5f.

5.3 Swelling test

Given a unit cube of material, a fluid pressure gradient is
imposed between the twoopposite faces at X = 0 and X = 1.
The pressure pD on the inlet face X = 0 is increased very
rapidly from zero to a limiting value of 10kPa, i.e., pD =
104(1 − exp(−t2/0.25)) Pa). On the outlet face X = 1, the
pressure is fixed to be zero, pD = 0. There are no sources
of sinks of fluid. A zero flux condition is applied for the
fluid velocity on the four other faces (Y = 0, 1, Z = 0, 1).
Normal displacements are required to be zero on the planes
X = 0, Y = 0 and Z = 0. The permeability of the cube
0 < X < 0.5, 0.5 < Y < 1, 0 < Z < 0.5, i.e., 1/8
of the volume, is smaller than in the rest of the unit cube
by a factor of 500. The computational domain is shown in
Fig. 6a, highlighting the region of reduced permeability. The
parameters chosen for this test problem are given in Table
5. This problem is similar to the one in [13] and highlights
the method’s ability to reliably capture steep gradients in the
pressure solution due to rapid changes inmaterial parameters.

Fluid enters the region from the inlet face and the material
swells like a sponge, undergoing large deformation as shown
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Terzaghi’s problem. a Pressure at t = 0.01 s using a continuous
linear pressure approximation. b Pressure at t = 1s using a continuous
linear pressure approximation. c Pressure at t = 0.01 s using a dis-
continuous piecewise constant approximation with Υ = 2 × 10−5. d
Pressure at t = 1 s using a discontinuous piecewise constant approxima-

tion with Υ = 2× 10−5. e Pressure at t = 0.01 s using a discontinuous
piecewise constant approximation without stabilization. f Pressure at
t = 1 s using a discontinuous piecewise constant approximationwithout
stabilization.
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Fig. 6 Swelling test. a Initial configuration. The grey cube represents the region of reduced permeability. The colored balls indicate the position of
the points used for tracking the pressure and volume changes shown in Fig. 7a and b. b The deformed cube after 1 s showing the pressure solution
and fluid flux

Table 5 Parameters used for the swelling test problem

Parameter Description Value

φ0 Initial fluid volume fraction 0.9

k0 Dynamic permeability 10−5 m3 s kg−1

ν Poisson ratio 0.3

E Young’s modulus 8000 kgm−1 s−2

Δt Time step used in the simulation 0.02 s

T Final time of the simulation 20 s

Υ Stabilization parameter 10−4

in Fig. 6b. The evolution of the pressure and the Jacobian at
the points at (0, 0, 1), (0.5, 0, 1) and (1, 0, 1) in the reference
configuration are shown in Fig. 7a and b respectively. These
positions are indicated by the red, blue and green balls in Fig.
6a. The pressure and volume change at the point (0, 1, 0)
(black ball in Fig. 6a) is also shown in Fig. 7a and b. Due to
its reduced permeability, this region is much slower to swell
and achieve its ultimate equilibrium state and the fluidmainly
flows around the region of reduced permeability, see Fig. 6b.
The steep pressure gradients at the boundary of the less per-
meable region seen in Fig. 6b are well approximated by the
piecewise constant (discontinuous) pressure space even on
this relatively coarse discretization, and the no-flux boundary
condition is enforced correctly along the deformed bound-
ary. Continuous pressure spaces would require a much finer
discretization in this region.

Figure 8 shows the pressure solution for this test prob-
lem with (Υ = 10−4 in Fig. 8a) and without stabilization

(Υ = 0 in Fig. 8b) at t = 0.02 s. The computation was
performed using 512 hexahedral elements. Note that with-
out any stabilization pressure an instability in the pressure is
observed.

To further investigate and demonstrate that a lack of sta-
bilization will result in a loss of inf-sup stability and thus
result in a spurious chequer board pressure solution, we run
the same swelling test problem, but with a homogeneous
permeability permeability set at k0 = 10−5. Furthermore we
solve this problem on a 12,288 element tetrahedral mesh,
which has a smaller ratio of fluid and displacement nodes to
pressure nodes, compared to the previously used hexahedral
mesh, thus worsening the inf-sup instability properties [18].
Figure 9 shows the pressure solution with (Υ = 10−4 in Fig.
9a) and (Υ = Υ = 10−12 in Fig. 9b) at t = 0.02 s. Note that
without sufficient stabilization the lack of inf-sup stability
can clearly be observed in the form of a spurious pressure
checkerboard solution. These numerical examples demon-
strate that the stabilization scheme is very robust to ensuring
inf-sup stability by allowing a large range of stabilization
parameters to be used, before spurious pressure oscillations
caused by a loss of inf-sup stability are observed. However
when wishing to capture pressure boundary layer type solu-
tions, care does need to be taken to ensure that the pressure
solution is not overly smoothed. As a practical guide we rec-
ommend first choosing a large stabilization parameter and
then repeatedly lowering the stabilization parameter by an
order of magnitude until the lowest parameter is found that
leads to a pressure solution without any oscillations.

123



Comput Mech (2017) 60:51–68 63

Evolution of pressure

Time(s)

P
re

ss
ur

e(
P

a)

(a)

Evolution of Jacobian

Time(s)

J
(b)

Fig. 7 Swelling test. a Pressure, p, at locations X = (0, 0, 1) [red],
X = (0.5, 0, 1) [blue], X = (1, 0, 1) [green] and X = (1, 0, 1) [black].
bVolumechange, J (b) at locations X = (0, 0, 1) [red], X = (0.5, 0, 1)

[blue], X = (1, 0, 1) [green] and X = (1, 0, 1) [black]. (These loca-
tions are shown using the colored balls in Fig. 6a)
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Fig. 8 Swelling test problem with non-uniform permeability. Pressure field at t = 0.02 s using the stabilized finite element method. a Υ = 10−4,
b Υ = 0
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Fig. 9 Swelling problem with uniform permeability. Tetrahedral mesh. a Pressure field at t = 0.02 s using the stabilized finite element method.
a Υ = 10−4, b Υ = 10−12
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6 Conclusions

Stabilized low-order methods can offer significant computa-
tional advantages over higher order approaches. In particular,
one can employmesheswith fewer degrees of freedom, fewer
Gauss points, and simpler data structures. The additional sta-
bilization terms can also improve the convergence properties
of iterative solvers.

The main contribution of this paper is to extend the local
pressure jump stabilization method [12] already applied to
three-field linear poroelasticity in [7], to the finite strain case.
Thus, the proposed scheme is built on an existing scheme
for which rigorous theoretical results addressing the sta-
bility and optimal convergence have been proven, and for
which numerical experiments have demonstrated its ability
to overcome spurious pressure oscillations. Owing to the dis-
continuous pressure approximation, sharp pressure gradients
due to changes inmaterial coefficients or boundary layers can
be captured reliably, circumventing the need for severe mesh
refinement. The addition of the stabilization term introduces
minimal additional computational work, can be assembled
locally on each element using standard element informa-
tion, and leads to a symmetric addition to the original system
matrix, thus preserving any existing symmetry.As the numer-
ical examples have demonstrated, the stabilization scheme is
robust and leads to high-quality solutions.
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Appendix 1: Model derivation

Conservation of mass

The mass balance for the solid and fluid phases respectively
can be expressed as

d

dt

∫

Ω(t)
(1 − φ)ρs dΩ(t)

=
∫

Ω(t)

(
∂(1 − φ)ρs

∂t
+ ∇ · ((1 − φ)ρsvs)

)

dΩ(t) = 0, (29)

d

dt

∫

Ω(t)
φρ f dΩ(t)

=
∫

Ω(t)

(
∂φρ f

∂t
+ ∇ · (φρ f v f )

)

dΩ(t) =
∫

Ω(t)
ρ f g dΩ(t),

(30)

where v f is the velocity of the fluid and vs is the velocity of
the solid given by

vs(x, t)|x=χ(X,t) = ∂χ(X, t)

∂t
. (31)

and g is a general source or sink term. In differential form,

∂(1 − φ)ρs

∂t
+ ∇ · ((1 − φ)ρsvs) = 0 in Ω(t), (32)

∂(φρ f )

∂t
+ ∇ · (φρ f v f ) = ρ f g in Ω(t), (33)

or,

∂ρ̂s

∂t
+ ∇ · (ρ̂svs) = 0 in Ω(t), (34)

∂ρ̂ f

∂t
+ ∇ · (ρ̂ f v f ) = ρ f g in Ω(t), (35)

where ρ̂s = ρs(1 − φ) and ρ̂ f = ρ f φ.

First noting that ρs and ρ f are constants and can be fac-
tored out and then adding Eqs. (32) and (33), provides the
mass balance or continuity equation of the mixture,

∇ · ((1 − φ)vs) + ∇ · (φv f ) = g in Ω(t). (36)

Conservation of momentum

For α = s, f the conservation of linear momentum for solid
and fluid components is given by

d

dt

∫

Ω(t)
ρ̂αvαdΩ(t) =

∫

Ω(t)
∇ ·σα + ρ̂α f + p̂α +βαvα dΩ(t),

(37)

where σα is the Cauchy stress tensor for the α = s, f , f
is a body force, p̂α are interaction forces representing fric-
tional interactions between the solid and fluid (see 1) and βα

is the constituent source term. Here βs = 0 and β f = ρ f g.
Applying Reynolds Transport Theorem, we rewrite the inte-
gral conservation law in differential form and obtain

∂(ρ̂αvα)

∂t
+ (vα · ∇)(ρ̂αvα) + ρ̂αvα(∇ · vα)

= ∇ · σα + ρ̂α f + p̂α + βαvα in Ω(t). (38)

Expanding the LHS,

ρ̂α

(
∂vα

∂t
+ (vα · ∇)vα

)

+
(

∂ρ̂α

∂t
+ (vα · ∇)ρ̂α + ρ̂α(∇ · vα)

)

vα

= ρ̂α Dvα

Dt
+
(

∂ρ̂α

∂t
+ ∇ · (ρ̂αvα)

)

vα.
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Using (34) and (35) to replace the second term above,

ρ̂αaα = ∇ · σα + ρ̂α f + p̂α in Ω(t), (39)

where

as(x, t)|x=χ(X,t) = ∂2χ(X, t)

∂t2
, (40)

a f = ∂v f

∂t
+ (v f · ∇)v f . (41)

Constitutive relationships

Constitutive relationships for the interaction forces, perme-
ability tensor and solid and fluid stress tensors are provided
below. We choose expressions for the constitutive laws that
appear frequently in the literature.

Interaction forces

The interaction force is given by

p̂s = − p̂ f = −p∇φ + φ2k−1 · (v f − vs), (42)

where k is the (dynamic) permeability tensor and p is thefluid
pressure [16]. The first term, p∇φ, accounts for the pressure
effect resulting from the variation of the section offered to
the fluid flow, and the second term, φ2k ·(v f −vs), describes
the viscous resistance opposed by the shear stress to the fluid
flow from the drag at the internal walls of the porous network.
This particular choice for the interaction force means that the
momentum balance for the fluid flow can later be reduced to
the well known Darcy law.

Permeability tensor

The permeability tensor is given by

k = J−1Fk0(C)FT , (43)

where k0(C) is the permeability in the reference configura-
tion, which may be chosen to be some (nonlinear) function
dependent on the deformation. Examples of deformation
dependent permeability tensors for biological tissues can be
found in [24,34,35]. A common isotropic assumption is

k = κ0Π (J ) I, (44)

where κ0 is the permeability in the reference configuration
andΠ (J ) is some function dependent on the volume change.
For example, in [34], the following isotropic constitutive law

for the permeability of lung tissue is proposed

k = κ0

(

J
φ

φ0

)2/3

I, (45)

where κ0 is the permeability in the reference configuration.

Solid stress tensor

The solid stress tensor is given by [8],

σ s = σ s
e − (1 − φ)p I, (46)

where σ s
e is the effective stress tensor given by

σ s
e = 1

J
F · 2∂W (C)

∂C
· FT . (47)

Here W (C) denotes a strain-energy law (hyperelastic
Helmholtz energy functional) dependent on the deformation
of the solid.

Fluid stress tensor

The fluid stress tensor can be written as [8],

σ f = σ
f
vis − φp I, (48)

whereσ
f
vis denotes the viscous stress tensor of thefluid, given

by

σ
f
vis = μ f φ

(

(∇v f ) + (∇v f )
T − 2

3
∇ · v f

)

, (49)

where μ f is the dynamic viscosity of the fluid.

The general poroelasticity model

Summing the conservation laws for solid and fluid and
applying the constitutive relations, the conservation of lin-
ear momentum for the mixture is

ρ̂sas + ρ̂ f a f = ∇ · (σ e + σ vis − p I) + ρ f in Ω(t). (50)

The momentum equation for the fluid flow alone is

ρ̂ f a f = ∇ · (σ f
vis −φp I)+ ρ̂ f f + p∇φ −φ2k−1(v f −vs) inΩ(t).

(51)

We define the boundary ∂Ω(t) = Γd(t)∪Γn(t) for the mix-
ture and ∂Ω(t) = Γp(t)∪Γ f (t) for the fluid,with an outward
pointing unit normal n. The problem for the mixture theory
model is: Find χ(X, t), v f (x, t) and p(x, t) such that
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ρ̂sas + ρ̂ f a f = ∇ · (σ e + σ vis − p I) + ρ f in Ω(t),

ρ̂ f a f = ∇ · (σ
f
vis − φp I) + p∇φ

− φ2k−1(v f − vs) + ρ̂ f f in Ω(t),

∇ · ((1 − φ)vs) + ∇ · (φv f ) = g in Ω(t),

χ(X, t)|X=χ−1(x,t) = X + uD on Γd(t),

(σ e + σ vis − p I)n = tN , on Γn(t),

v f = v
f
D on Γ f (t),

n · σ
f
vis · n − φp I · n = sD on Γp(t),

χ(X, 0) = X, vs(X, 0) = vs0, v f (X, 0) = v f 0 in Ω(0).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(52)

Simplification of the model

We assume accelerations aα and the viscous shear stress in
the fluid σ

f
vis are small, and define the fluid flux variable

z = φ(v f − vs). (53)

The resulting problem is: Find χ(X, t), z(x, t) and p(x, t)
such that

−∇ · (σ e − p I) = ρ f

k−1z + ∇ p = ρ f f

∇ · (vs + z) = g

χ(X, t)|X=χ−1(x,t) = X + uD

(σ e − p I)n = tN
z · n = qD

p = pD

χ(X, 0) = X

in Ω(t),

in Ω(t),

in Ω(t),

on Γd(t),

on Γt (t),

on Γ f (t),

on Γp(t),

in Ω(0).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(54)

We note that, for example

∫

Ωt

∇x · σ(x) dx =
∫

Ωt

∇X · F−1σ(χ(X, t)) dx

=
∫

Ω0

∇X · F−1 Jσ(χ(X, t)) dX

=
∫

Ω0

∇X · (SFT ) dX,

(55)

where S is the second Piola-Kirchoff stress tensor.

Appendix 2: The fourth-order spatial tangent mod-
ulus tensor Θi j kl

The fourth-order spatial tangent modulus tensorΘi jkl can be
written as (in component form, see [9, section 5.3.2] and [25,
section 6.6] )

Θi jkl = 1

J
Fi I Fj J FkK FlLCI J K L , (56)

where C is the associated tangent modulus tensor in the ref-
erence configuration, given by

CI J K L = 4∂2W

∂CI J ∂CKL
+ pJ

∂C−1
I J

∂CKL
. (57)

For the numerical examples we have used the followingNeo-
Hookean strain-energy law

W (C) = μ

2
(tr(C)−3)+Λ

4
(J 2−1)−(μ+Λ

2
)ln(J−1+φ0).

(58)

Thus, the resulting effective stress tensor is given by

σ e = Λ

2

(

J − 1

J − 1 + φ0

)

I +μ

(
CT

J
− I

J − 1 + φ0

)

,

(59)

and the spatial tangent modulus tensor is given as

� = �e + p(I ⊗ I − 2Z), (60)

where

�e =
[

ΛJ − 2μ

(
1

2(J − 1 + φ0)
− J

2(J − 1 + φ0)
2

)]

I ⊗ I

+
[

2μ

J − 1 + φ0
− Λ(J − 1

J − 1 + φ0
)

]

B, (61)

and

Bi jkl = 1

2
(δikδ jl+δilδ jk), Zi jkl = δikδ jl , I⊗I = δi jδkl .

(62)
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See [9, chapter 5] and [57, chapter 3] for further details.

To simplify the implementation of the spatial tangentmod-
ulus we make use of matrix Voigt notation. The matrix form
of β is given by D, which can be written as (see [9, section
7.4.2])

D = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2�1111 2�1122 2�1133 �1112 + �1121 �1113 + �1131 �1123 + �1132

2�2222 2�2233 �2212 + �2221 �2213 + �2231 �2223 + �2232

2�3333 �3312 + �3321 �3313 + �3331 �3323 + �3332

�1212 + �1221 �1213 + �1231 �1223 + �1232

sym. �1313 + �1331 �1323 + �1332

�2323 + �2332

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (63)

We also make use of the following implementation friendly
matrix notation for ∇Sφk

Ek =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

φk,1 0 0
0 φk,2 0
0 0 φk,3

φk,2 φk,1 0
0 φk,3 φk,2

φk,3 0 φk,1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (64)
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