371 research outputs found

    Magnetic-field-inspired navigation for quadcopter robot in unknown environments

    Get PDF
    In this paper, a magnetic-field-inspired robot navigation is used to navigate an under-actuated quad-copter towards the desired position amidst previously-unknown arbitrary-shaped convex obstacles. Taking inspiration from the phenomena of magnetic field interaction with charged particles observed in nature, the algorithm outperforms previous reactive navigation algorithms for flying robots found in the literature as it is able to reactively generate motion commands relying only on a local sensory information without prior knowledge of the obstacles' shape or location and without getting trapped in local minima configurations. The application of the algorithm in a dynamic model of quadcopter system and in the realistic model of the commercial AscTec Pelican micro-aerial vehicle confirm the superior performance of the algorithm

    Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.

    Get PDF
    Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV) domain and a basic zipper (bZIP) domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR) difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA

    Model-based Pose Control of Inflatable Eversion Robot with Variable Stiffness

    Get PDF

    Observer-based Control of Inflatable Robot with Variable Stiffness

    Get PDF
    In the last decade, soft robots have been at the forefront of a robotic revolution. Due to the flexibility of the soft materials employed, soft robots are equipped with a capability to execute new tasks in new application areas -beyond what can be achieved using classical rigid-link robots. Despite these promising properties, many soft robots nowadays lack the capability to exert sufficient force to perform various real-life tasks. This has led to the development of stiffness-controllable inflatable robots instilled with the ability to modify their stiffness during motion. This new capability, however, poses an even greater challenge for robot control. In this paper, we propose a model-based kinematic control strategy to guide the tip of an inflatable robot arm in its environment. The bending of the robot is modelled using an Euler-Bernoulli beam theory which takes into account the variation of the robot's structural stiffness. The parameters of the model are estimated online using an observer based on the Extended Kalman Filter (EKF). The parameters' estimates are used to approximate the Jacobian matrix online and used to control the robot's tip considering also variations in the robot's stiffness. Simulation results and experiments using a fabric-based planar 3-degree-of-freedom (DOF) inflatable manipulators demonstrate the promising performance of the proposed control algorithm

    Biochemical applications of surface-enhanced infrared absorption spectroscopy

    Get PDF
    An overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. [Figure: see text

    Towards Safer Obstacle Avoidance for Continuum-Style Manipulator in Dynamic Environments

    Get PDF
    The flexibility and dexterity of continuum manipulators in comparison with rigid-link counterparts have become main features behind their recent popularity. Despite of that, the problem of navigation and motion planning for continuum manipulators turns out to be demanding tasks due to the complexity of their flexible structure modelling which in turns complicates the pose estimation. In this paper, we present a real-time obstacle avoidance algorithm for tendondriven continuum-style manipulator in dynamic environments. The algorithm is equipped with a non-linear observer based on an Extended Kalman Filter to estimate the pose of every point along the manipulator’s body. A local observability analysis for the kinematic model of the manipulator is also presented. The overall algorithm works well for a model of a single-segment continuum manipulator in a real-time simulation environment with moving obstacles in the workspace of manipulators, able to avoid the whole body of manipulators from collision

    Real-time Robot-assisted Ergonomics

    Get PDF
    This paper describes a novel approach in human robot interaction driven by ergonomics. With a clear focus on optimising ergonomics, the approach proposed here continuously observes a human user's posture and by invoking appropriate cooperative robot movements, the user's posture is, whenever required, brought back to an ergonomic optimum. Effectively, the new protocol optimises the human-robot relative position and orientation as a function of human ergonomics. An RGB-D camera is used to calculate and monitor human joint angles in real-time and to determine the current ergonomics state. A total of 6 main causes of low ergonomic states are identified, leading to 6 universal robot responses to allow the human to return to an optimal ergonomics state. The algorithmic framework identifies these 6 causes and controls the cooperating robot to always adapt the environment (e.g. change the pose of the workpiece) in a way that is ergonomically most comfortable for the interacting user. Hence, human-robot interaction is continuously re-evaluated optimizing ergonomics states. The approach is validated through an experimental study, based on established ergonomic methods and their adaptation for real-time application. The study confirms improved ergonomics using the new approach.Comment: 6 pages, accepted and to be presented at IEEE ICRA 201

    Reactive Magnetic-Field-Inspired Navigation Method for Robots in Unknown Convex 3-D Environments

    Get PDF

    Static kinematics for an antagonistically actuated robot based on a beam-mechanics-based model

    Get PDF
    Soft robotic structures might play a major role in the 4th industrial revolution. Researchers have successfully demonstrated advantages of soft robotics over traditional robots made of rigid links and joints in several application areas including manufacturing, healthcare and surgical interventions. However, soft robots have limited ability to exert higher forces when it comes to interaction with the environment, hence, change their stiffness on demand over a wide range. One stiffness mechanism embodies tendon-driven and pneumatic air actuation in an antagonistic way achieving variable stiffness values. In this paper, we apply a beammechanics-based model to this type of soft stiffness controllable robot. This mathematical model takes into account the various stiffness levels of the soft robotic manipulator as well as interaction forces with the environment at the tip of the manipulator. The analytical model is implemented into a robotic actuation system made of motorised linear rails with load cells (obtaining applied forces to the tendons) and a pressure regulator. Here, we present and analyse the performance and limitations of our model
    • …
    corecore