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Abstract— The flexibility and dexterity of continuum ma-
nipulators in comparison with rigid-link counterparts have
become main features behind their recent popularity. Despite
of that, the problem of navigation and motion planning for
continuum manipulators turns out to be demanding tasks due
to the complexity of their flexible structure modelling which
in turns complicates the pose estimation. In this paper, we
present a real-time obstacle avoidance algorithm for tendon-
driven continuum-style manipulator in dynamic environments.
The algorithm is equipped with a non-linear observer based on
an Extended Kalman Filter to estimate the pose of every point
along the manipulator’s body. A local observability analysis for
the kinematic model of the manipulator is also presented. The
overall algorithm works well for a model of a single-segment
continuum manipulator in a real-time simulation environment
with moving obstacles in the workspace of manipulators, able
to avoid the whole body of manipulators from collision.

I. INTRODUCTION

During the last decade, continuum manipulators, mostly
inspired by biological properties of snake [1] or octopus [2],
have become an emerging technology in robotics. Diverse
continuum manipulators design and structures have been
explored recently [3], [4], [5]. Researches on modeling and
control have also been reported and summarized in [6], [7].

The flexibility and dexterity of such manipulators in
comparison with rigid-link counterparts become main fea-
tures behind their recent popularity. Their inherent bending
ability makes them more suitable to be applied in cluttered
environments such as surgery, or other medical applications
[8]. In industry, continuum manipulators mounted on mobile
platforms will have more flexibility than their industrial
counterparts. Managing this flexibility, while still achieving
speed and efficiency, is an important problem.

Despite of all this favorable features, the problem of mod-
elling and pose estimation of continuum manipulators turns
out to be daunting tasks due to their highly flexible structure.
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Fig. 1. A tendon-driven single-segment arms used as a model in this paper.
To measure the tip’s pose and the obstacle’s pose, the NDI Aurora tracker
can be adopted.

These will lead to a challenging problem of obstacle avoid-
ance in which the whole body of manipulators needs to be
kept safe from colliding with the surrounding environment,
especially when the environment of the manipulators changes
over time in an unpredictable way. Therefore, to have a
real-time pose estimation strategy, combined with reactive
obstacle avoidance, is crucial to achieve safe collision-free
motion in dynamic environments.

Researches on continuum manipulators pose estimation
have been reported in recent years. Most of the works
have been implemented for snake-like robots [9], [10], [11].
Others used pose estimation to steerable catheter [12] and
tendon-driven manipulators [13], [14]. Among other estima-
tion techniques, the Kalman-Filter [9], [11] or a variance [15]
have been predominantly employed. From the sensor side,
various type of measurement strategy have been reported,
such as inertial sensor [10] and visual sensing approach
[15], [12], [14]. While the inertial sensor suffers from an
accumulated integration error, visual sensing approach can
be unreliable for dynamically changing environment. Other
emerging approach in this field is the application of electro-
magnetic based sensor to track the position and orientation
of a point on the robots body [9], [11]. Yet, the current
researches lack a further utilization of the pose estimation
approach to improve safety of continuum manipulators from
collision.
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Fig. 2. The frame configuration used for a segment of the manipulator. A
point P located at δ s along the backbone can be expressed with the help of
the scalar ξ = δ .

For unpredictable dynamically changing environment, a
real- time reactive obstacle avoidance is needed. Several
obstacle avoidance approaches have been implemented in
the field of continuum robot. A real-time adaptive motion
planning approach was used for octopus-inspired continuum
manipulator with moving obstacles [16]. However, the ma-
nipulator is assumed to move in planar case only while, at
the same time, the algorithm has yet to produce solution in
actuator space, limiting its application. An alternative work
used an inverse-Jacobian-based planning to yield solutions
in actuator space [17]. Yet, the avoid-obstacle approach is
designed for a specific workspace inside a tubular environ-
ment. A well-known potential field method was successfully
implemented for a steerable needle in soft tissue environment
[18]. Although having a well-documented local minima
problem, the reactive property of this approach makes it
perfectly suited for dynamic environments.

In this paper, we propose a real-time obstacle avoid-
ance for tendon-driven continuum manipulator in dynamic
environments. The obstacle avoidance algorithm is derived
from classical potential field and modified to be used in
the kinematic model of continuum manipulators. An electro-
magnetic-based sensor is assumed to provide the tip’s po-
sition of the manipulators. To enhance the safety of the
whole body of manipulators, the algorithm is equipped with
a non-linear observer based on an Extended Kalman Filter
to estimate the pose of every point along the manipulator’s
body based on the model and measurement data. To our
knowledge, this is the first attempt which further utilizes the
pose estimation stage for safety improvement in avoiding
collision for tendon-driven continuum manipulator. A local
observability analysis for the kinematic model of the manipu-
lator is presented. The overall algorithm is implemented for a
kinematic model of a single-segment continuum manipulator
as shown in Figure 2 [19]. The results illustrate the capability
of the proposed algorithm to avoid collision in dynamically
changing environments.

II. MODELLING OF CONTINUUM MANIPULATOR

A. Kinematic Model

Throughout this paper, we assume that the segment of the
manipulator behaves like the arc of a circle with a constant
radius of curvature. For manipulator whose workspace is

in R3, the manipulator’s segment can be specified by three
configuration space variables k =

[
κ φ s

]T where κ , φ ,
and s denote the curvature, rotational deflection angle, and
arc length of a segment respectively. By referring to Figure 1,
the homogeneous transformation matrix describing the pose
of the tip with respect to the base, T(k)∈ SE(3), is a function
of the component of k as reported in [6].

T(k) =


cosφ cosκs −sinφ cosφ sinκs 1

κ
cosφ(1− cosκs)

sinφ cosκs cosφ sinφ sinκs 1
κ

sinφ(1− cosκs)

−sinκs 0 cosκs 1
κ

sinκs

0 0 0 1

 . (1)

Further mapping is needed to formulate the relationship
between the previous configuration space variables k and
the actuator space variables q. This mapping depends on the
manipulator’s design and actuating mechanism. For a tendon-
driven continuum manipulator, like the one presented in [19],
a segment consists of three tendons whose length can be
modified through the DC Motor system. Hence, the actuator
space variables is specified by the length of each tendon and
can be expressed as q=

[
l1 l2 l3

]T where li represents the
length of tendon-i. The relation between the configuration
space variables k and the actuator space variables q is as
follows [6]

κ(q) =
2
√

l2
1 + l2

2 + l2
3 − l1l2− l2l3− l1l3

d(l1 + l2 + l3)
. (2)

φ(q) = tan−1
√

3(l2 + l3−2l1)
3(l2− l3)

. (3)

s(q,ξ ) =
ξ ∑

3
j=1 l j

3
. (4)

where d represents the cross-section radius or the distance
between the centre of the cross-section to each tendon and
ξ is a scalar specifying a unique point located along the
backbone of the manipulators. ξ = 0 stands for the base
position and ξ = 1 stands for the tip of manipulator. Thus,
any value of ξ ∈ [0,1] stands for a point locating between
the base and the tip along the arc of the segment.

Hence, the complete forward kinematic relation can be
expressed in the following form

T(q,ξ ) =
[

R(q,ξ ) p(q,ξ )
01×3 1

]
(5)

where R(q,ξ ) ∈ SO(3) denotes the rotation matrix and
p(q,ξ ) ∈ R3 denotes the position vector of the point along
the body of manipulator.

A Jacobian of a point in the backbone of manipulator,
J(q,ξ ) ∈ R3×3, is defined as

J(q,ξ ) =
∂p(q,ξ )

∂q
. (6)

It relates the velocity vector in the actuator space q̇ to the
task space ṗ as follows

ṗ = J(q,ξ )q̇. (7)
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B. State-Space Representation

The state space representation is used to describe the
kinematic model of the continuum manipulator. The state
equation and output equation in discrete form are as follows

xk+1 = f (xk,uk), (8)

yk = g(xk), (9)

where xk ∈ X , uk ∈ U , and yk ∈ Y denote the state, input,
and output value at iteration-k respectively while X , U , and
Y denote the state space, input space, and output space
respectively. The function f : X ×U → X is used to map
the current state and input to the next state while g : X → Y
is used to map the current state to the output.

For the kinematic model in Section II, the tendon’s length
q ∈ R3 is used as a state variable x. The actuator that we
use in our manipulator is DC motor; each is connected to
a tendon which will governs the pose of manipulator. So,
our input signal u in this case is given by the DC motor’s
rotational speed which is identical to the tendon length’s rate
of change q̇ ∈ R3.

x = q =
[
l1 l2 l3

]T
, (10)

u = q̇ =
[
l̇1 l̇2 l̇3

]T
. (11)

For the time sampling of ∆t, the state equation in (8) can be
rewritten as

xk+1 = f (xk,uk) = xk +∆tuk. (12)

To construct the output equation, we have to know what
sensor is available in the manipulators. In this paper, we
assume that a 3-DOF electro-magnetic-based tracker is em-
bedded in the tip of manipulator. This sensor will give a
position of the tip with respect to the base. The measurement
rate is assumed to be identical to the sampling frequency 1

∆t
such that new data is always available at every iteration.
Therefore, the output y in Equation (9) is denoted by the
tip’s position with respect to the base, p.

y = g(xk) = p(q,ξ = 1), (13)

Thus, the output equation is a forward kinematics relation,
i.e. it matches the component of the homogeneous transfor-
mation matrix in Equation (5).

Knowing the input value at every iteration uk and the
initial state x0, we can determine the value of the state
xk as well as the position of a point along the backbone
of the manipulator p(q = xk,ξ ) at every iteration using
Equation (12) and (5). However, the value of initial state x0
is usually unknown. Moreover, using only the state equation
and forward kinematics relation, the error in choosing the
initial state value will result in an error in the whole ma-
nipulator’s pose estimation. This will in turn pose a problem
for the motion planning stage to achieve the target position
and avoid collision. To overcome this problem, a non-linear
observer is needed to estimate the pose without relying on
the information of the state’s initial value.

III. THE PROPOSED OBSTACLE AVOIDANCE
ALGORITHM

A. Observability Analysis of a Linearized Kinematic Model

Before designing the observer, it is important to check the
system’s observability. A linearization is used to check the
local observability of a non-linear model. In this section, we
present an observability analysis on a linearized version of
the non-linear kinematic model presented in previous section.

A linear system can be expressed by the following state
equation and output equation

xk+1 = Axk +Buk, (14)

yk = Cxk. (15)

The linearization of a non-linear model is achieved by com-
puting the corresponding matrix A = ∂ f (xk,uk)

∂xk
, B = ∂ f (xk,uk)

∂uk

and C = ∂g(xk)
∂xk

.
To check the observability, we only need matrix A, which

turns out to be an identity matrix, and C, which turns out to
be a Jacobian of the tip given by

Ak =
∂ f (xk,uk)

∂xk
= I ∈ R3×3, (16)

Ck =
∂g(xk)

∂xk
=

∂p(qk,ξ = 1)
∂qk

= J(qk,ξ = 1). (17)

Using Equation (6) and a chain-rule derivative, we can
express the Jacobian matrix J(q,ξ ) as follows

J(q,ξ ) =
∂p(k,ξ )

∂k
∂k
∂q

= JkJq. (18)

The Jacobian matrices component are derived from Equation
(1)-(4) as follows

Jk =


cosφ(κssinκs+cosκs−1)

κ2 − sinφ(1−cosκs)
κ

cosφ sinκs
sinφ(κssinκs+cosκs−1)

κ2
cosφ(1−cosκs)

κ
sinφ sinκs

κscosκs−sinκs
κ2 0 cosκs

 (19)

Jq =


3(l1l2+l1l3−l2

2−l2
3 )

dl2
+ls

− 3(l2
1−l1l2−l2l3+l2

3 )

dl2
+ls

− 3(l2
1−l1l3−l2l3+l2

2 )

dl2
+ls√

3(l3−l2)
2l2

s

√
3(l1−l3)

2l2
s

√
3(l2−l1)

2l2
s

1
3

1
3

1
3

 (20)

where l+ = l1 + l2 + l3; ls =
√

l2
1 + l2

2 + l2
3 − l1l2− l1l3− l2l3.

An observability matrix O=
[
C CA ... CAn−1]T can

be used to check whether the system with n number of state
is observable. For our linearized system, the observability
matrix O ∈ R9×3 is expressed as

O =
[
J(qk,ξ = 1) J(qk,ξ = 1) J(qk,ξ = 1)

]T
. (21)

The condition for observability is rank(O) = n = 3. From the
above equation, the following proposition is concluded.

Proposition 1: The linearized system as described in (14)-
(20) is observable at all state except the singular state.

Proof: From the form of the matrix O, we can
easily conclude that its rank is equal to the rank of the
Jacobian matrix itself, i.e. rank(O) = rank(J(q,ξ )). We can
see from Equation (19)-(20) that each Jacobian component
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Fig. 3. Illustration of combined attractive and repulsive potential function
applied in R2. The desired position is located at the lowest point of the
potential while the high peak represents the obstacle’s position.

(and equally their products) will always have a full rank aside
from the singular configuration where l1 = l2 = l3 and κ = 0
or a zero-bending configuration. Hence, if we assume that
the manipulator is never at the singular configuration during
the whole movement, both Jk and Jq will always have a
full rank of n = 3, and so does matrix O. So, the linearized
system is concluded to be observable at every state except
the singular configuration.

B. Pose Estimation

Knowing that the linearized system is observable, the well-
known Extended Kalman Filter (EKF) is designed to estimate
the state value, i.e. the tendon’s length. From the state
equation and output equation in (8)-(9), the EKF formulation
is given by

x̂k+1|k = f (x̂k|k,uk),

Pk+1|k = AkPk|kAT
k +Qk,

Kk = Pk+1|kCT
k (CkPk+1|kCT

k +Rk)
−1,

x̂k+1|k+1 = x̂k+1|k +Kk(yk−g(x̂k+1|k)),

Pk+1|k+1 = (I−KkCk)Pk+1|k.

(22)

x̂k+1|k+1, x̂k|k, uk, and yk stand for the next state estimation,
the current state estimation, the input signal, and the mea-
surement data respectively. The matrix Qk ∈R3×3 and Rk ∈
R3×3 denote the process noise variance and measurement
noise variance respectively. The measurement yk is taken
from position sensor, such as an electro-magnetic based
tracker, assumed to be embedded in the tip of manipulator.
The pose estimation of the tip or any point along the segment
of the manipulator can be derived by applying a forward
kinematics in (5) to the state estimate x̂ produced by EKF.
This pose information will be used in the obstacle avoidance.

C. Modified Potential Field

The obstacle avoidance algorithm employed in this paper
is a modification of reactive potential field method [20]. The
manipulator’s workspace will be filled with a potential field,
derived from a potential function U , designed to make tip of
manipulator moves towards a defined target position while at

the same time avoid the manipulator’s body from collisions.
The generalized potential field is derived from F =−∇U .

A modification is made such that the standard potential
field method can be applied to a kinematic model of a
continuum manipulator. The generalized field F is regarded
as the manipulator’s velocity in task space, ṗ. Therefore, ṗ
is written as

ṗ =−∇pU(p). (23)

An inverse Jacobian relation given in (7) is then used to get
the actuator space velocity q̇ as the input to our system.

The attractive potential function is given by

Ud(p) =
1
2

c(p−pd)
T (p−pd), (24)

where pd and c stand for a desired position and a positive
constant gain respectively. The repulsive potential of an
obstacle is given by

UO(p) =

{
1
2 η( 1

ρ
− 1

ρ0
)2 if ρ < ρ0

0 if ρ ≥ ρ0
(25)

where ρ =
√
(p−pO)T (p−pO) represents the closest dis-

tance from an obstacle to the manipulator’s body, η is
positive constant, and ρ0 denotes the limit distance of the
potential influence.

The corresponding attractive velocity in workspace is
given by

ṗpd =−c(p−pd). (26)

The corresponding repulsive velocity can be calculated as
follows

ṗO =

{
η( 1

ρ
− 1

ρ0
) 1

ρ2
∂ρ

∂p if ρ < ρ0

0 if ρ ≥ ρ0
. (27)

Figure 3 shows an illustration of the potential function in
planar case.

To make the whole body of the manipulator safe from
any collision, a number of points, called point subjected to
potential (PSP), is picked from the body of the manipulators.
The closest PSP to the neighboring environment will be
chosen as a point where the repulsive potential is applied.
The pose of the tip (p(q,ξ = 1)) as well as the PSPs (p(q,ξ ∈
[0,1])) are all estimated by the EKF at every iteration as
expressed by

p̂k(ξ ) = p(x̂k|k,ξ ). (28)

Lastly, the spatial velocity applied in the tip and the
chosen PSP are mapped to the corresponding actuator space
velocity and fed to the kinematic model as an input signal
uk. The resulting velocity is given by a linear combination of
attractive and repulsive velocity in actuator space as follows

uk = q̇ = J−1
e ṗpd +J−1

a ṗO . (29)

Je and Ja stand for the Jacobian of the tip and the chosen
PSP respectively, as derived from (6) with the value of scalar
ξ depending on the position of the PSP along the backbone
of the manipulator. ṗOb corresponds to a repulsive potential
produced by the closest obstacle.
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Fig. 4. The proposed pose estimator and obstacle avoidance algorithm. An ideal kinematics model, added with Gaussian noise, is used to replace the
continuum manipulator and the pose sensor during the simulation.
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Fig. 5. (a) The comparison between the true state (red line) and the estimated state (blue line) produced by the EKF for the zero-input scenario. (b)
The comparison between the true pose with added Gaussian noise (red line) and the estimated pose (blue line) produced by the EKF for the zero-input
scenario.

TABLE I
PROPERTIES OF MANIPULATOR, POSE ESTIMATOR, AND POTENTIAL

FIELD

Param Value Param Value
d 0.0134 m c 2
Q 10−10I ∈ R3×3 η 2×10−9

R 2.5×10−7I∈R3n×3n ρ0 0.065 m
∆t 2.5×10−2 s

Hence, we have combined the pose estimation and the
obstacle avoidance algorithm to make the whole body of
manipulators safer from collision. The overall algorithm is
depicted in Figure 4.

IV. RESULTS AND DISCUSSION

Robot Operating System (ROS) real-time simulation en-
vironment was used to test the proposed algorithm. The
frequency is chosen to be 1

∆t =40 Hz. A single segment
manipulator used as a model has properties as described
in Table I. To noise in the simulated measurement data is
assumed to be Gaussian with zero-mean and the standard
deviation σ = 10−4. The corresponding variance matrix is
then given by R=σ2I∈R3×3. Three PSPs are assumed to be
located uniformly along the backbone of manipulators from
the tip to the point close to the base. An obstacle, assumed
to be spherical with 5 mm radius, moves at a constant speed
in the surrounding of the manipulator.

A. State and Pose Estimation

In the pose estimation simulation, we assume to have
measurement data of the tip pose yk from an ideal kinematic
model with added Gaussian noise. This is used to replace an
electro-magnetic tracker assumed to be embedded in the tip
of manipulator during the simulation for the state estimation
in the EKF. This perfect kinematic model has a true state
xk updated at every iteration. This true state, however, is
assumed to be unaccessible. The proposed algorithm will
only capitalize the estimated states x̂k from the EKF.

In the first simulation, the input signal is chosen to be
zero (u = 0 ∈ R3). Starting from a random initial state
value, the EKF receives the measurement data of the tip
pose yk and starts to estimate the state value as shown
in Figure 5a. Using this estimate of tendon length, by
employing the forward kinematics, the tip pose is estimated.
The comparison between the measured and the estimated tip
pose is shown in Figure 5b. We can see that the EKF needs
a reasonably small amount of time (around t = 1 s) to reach
the true value both for the state and the tip pose. This is
important since we want to use the state estimate value as
an input to the motion planning stage. Hence, we expect the
estimation error to be close to zero as soon as possible before
the obstacle avoidance detects any obstacle around.

In the second simulation, a circular path is given as a
reference for the manipulator’s tip. Using an inverse Jacobian
in (7), the varying input signal uk is derived. The true state
and tip pose measurement data will then vary over time. The

Preprint submitted to 6th IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics. Received March 1, 2016.



0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (s)

l 1 (
m

)

0 0.5 1 1.5 2 2.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (s)

l 2 (
m

)

0 0.5 1 1.5 2 2.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

l 3 (
m

)

(a)

0 0.5 1 1.5 2 2.5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time (s)

x 
(m

)

0 0.5 1 1.5 2 2.5
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Time (s)

y 
(m

)

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

z 
(m

)

(b)

(c)

Fig. 6. (a) The comparison between the true state (red line) and the estimated state (blue line) produced by the EKF for the circular-path scenario. (b)
The comparison between the true pose with added Gaussian noise (red line) and the estimated pose (blue line) produced by the EKF for the circular-path
scenario. (c) The movement of the continuum manipulator based on the estimated pose for circular-path scenario. The path is drew in red circle. The order
of the movement is from left to right.

Fig. 7. The movement of the single segments continuum manipulator with a static target position (small red dot) when obstacle (black sphere) moves
close to the tip of the manipulator. The order of movement is as follows: upper left picture, upper right picture, lower left picture, and finally lower right
picture.

results, as depicted in Figure 6a and 6b, show that the EKF
can cope with dynamically-changing input signal and tip
pose’s measurement. Figure 6c also shows the manipulator’s
movement estimation while tracking a red circular path.

B. Obstacle Avoidance
In this simulation, a pose estimator is used to estimate the

pose of the tip and the PSPs along the body of manipulator
to avoid obstacle and reach a desired target. The obstacle is
drew as a black sphere while the tip’s target, assumed to be
fixed, is drew as a red dot.

In the first simulation, the obstacle moves at a height close
to the tip’s position as depicted in Figure 7. The obstacle
avoidance works well, but the main contribution of the whole
algorithm can be seen when the obstacle to move at a lower
height, such as close to the manipulator’s centre of mass as
depicted in Figure 8. This height is chosen to check whether
the proposed algorithm is capable of steering not only the
tip but also the manipulator’s body in a way that it is safe
from collisions. Figure 8 shows how the obstacle avoidance
stage exploits the pose estimation result to make the body of
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(a) (b)

Fig. 8. The movement of the single segments continuum manipulator with a static target position (small red dot) when obstacle (black sphere) moves
close to the middle point of the manipulator’s body (a) in x-axis direction and (b) y-axis direction. The order of movement for each subfigure is as follows:
upper left picture, upper right picture, lower left picture, and finally lower right picture.

manipulator safer for the case of moving obstacle in x-axis
direction (Figure 8a) and y-axis direction (8b).

C. Discussion
The simulation results show that the combined pose esti-

mator and obstacle avoidance algorithm works well to keep a
single segment continuum manipulator safe from collision in
a real-time scenario with dynamic obstacle. One important
assumption that we make is that the obstacle is still in a
considerably large distance from the body of manipulator
during the initial stage of estimation. This assumption is
important because the pose estimate at that time, used in
the motion planner stage, still does not match the real pose
value due to the rise time needed by the EKF. Otherwise, the
planner might produce a repulsive potential field which does
not correspond to a real avoid-the-obstacle behavior. This
can even disturb the performance of the pose estimator. This
is another reason to keep the settling time and the rise time
value of the error estimation dynamics as low as possible.

The results also illustrate that the proposed method can be
implemented in a real manipulator. In that case, an electro-
magnetic tracker such as a 6-DOF NDI Aurora Tracker can
be used to measure the tip’s pose, as shown in Figure 1.
Looking at these promising results, the proposed strategy
can also be extended easily for a multi-segment continuum

manipulator. In this case, we might need more than one
electro-magnetic tracker to ensure the observability of the
entire robot body.

Despite its fast execution time for real-time applications,
the potential field itself is only a local reactive planner which
does not guarantee completeness in complex environments.
Running a global planner approach which produces an initial
trajectory with global property on top of the reactive obstacle
avoidance can also be explored in the future - this may,
though, be too slow to provide suitable paths sufficiently
quickly, especially in highly-dynamic environments.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a real-time pose estimator and obstacle
avoidance for a tendon-driven continuum-style manipulator
moving in dynamic environments is proposed. To our knowl-
edge, this is the first attempt which combines together pose
estimation and obstacle avoidance to improve the safety of
a tendon-driven continuum manipulator, minimizing the risk
of collisions between the manipulator body and obstacles in
the robot workspace. The proposed algorithm is shown to
perform in a real-time simulation.

This algorithm can be extended and applied to real ma-
nipulators, even in the case of multi-segment continuum
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arms. In the future, a more advanced dynamic model of the
continuum manipulator can also be explored. A combination
with a global motion planner approach when operating in
more complex environments can also be designed.
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