24 research outputs found

    Smoking, use of smokeless tobacco, HLA genotypes and incidence of latent autoimmune diabetes in adults

    Get PDF
    Aims/hypotheses Smoking and use of smokeless tobacco (snus) are associated with an increased risk of type 2 diabetes. We investigated whether smoking and snus use increase the risk of latent autoimmune diabetes in adults (LADA) and elucidated potential interaction with HLA high-risk genotypes. Methods Analyses were based on Swedish case-control data (collected 2010-2019) with incident cases of LADA (n=593) and type 2 diabetes (n=2038), and 3036 controls, and Norwegian prospective data (collected 1984-2019) with incident cases of LADA (n=245) and type 2 diabetes (n=3726) during 1,696,503 person-years of follow-up. Pooled RRs with 95% CIs were estimated for smoking, and ORs for snus use (case-control data only). The interaction was assessed by attributable proportion (AP) due to interaction. A two-sample Mendelian randomisation (MR) study on smoking and LADA/type 2 diabetes was conducted based on summary statistics from genome-wide association studies. Results Smoking (RRpooled 1.30 [95% CI 1.06, 1.59] for current vs never) and snus use (OR 1.97 [95% CI 1.20, 3.24] for >= 15 box-years vs never use) were associated with an increased risk of LADA. Corresponding estimates for type 2 diabetes were 1.38 (95% CI 1.28, 1.49) and 1.92 (95% CI 1.27, 2.90), respectively. There was interaction between smoking and HLA high-risk genotypes (AP 0.27 [95% CI 0.01, 0.53]) in relation to LADA. The positive association between smoking and LADA/type 2 diabetes was confirmed by the MR study. Conclusions/interpretation Our findings suggest that tobacco use increases the risk of LADA and that smoking acts synergistically with genetic susceptibility in the promotion of LADA.Peer reviewe

    Does Pregnancy Alter Life Course Lipid Trajectories?:Evidence from the HUNT Study in Norway

    Get PDF
    We examined the association between pregnancy and life-course lipid trajectories. Linked data from the Nord-Trøndelag Health Study and the Medical Birth Registry of Norway yielded 19,987 parous and 1,625 nulliparous women. Using mixed-effects spline models, we estimated differences in nonfasting lipid levels from before to after first birth in parous women and between parous and nulliparous women. HDL cholesterol (HDL-C) dropped by −4.2 mg/dl (95% CI: −5.0, −3.3) from before to after first birth in adjusted models, a 7% change, and the total cholesterol (TC) to HDL-C ratio increased by 0.18 (95% CI: 0.11, 0.25), with no change in non-HDL-C or triglycerides. Changes in HDL-C and the TC/HDL-C ratio associated with pregnancy persisted for decades, leading to altered life-course lipid trajectories. For example, parous women had a lower HDL-C than nulliparous women at the age of 50 years (−1.4 mg/dl; 95% CI: −2.3, −0.4). Adverse changes in lipids were greatest after first birth, with small changes after subsequent births, and were larger in women who did not breastfeed. Findings suggest that pregnancy is associated with long-lasting adverse changes in HDL-C, potentially setting parous women on a more atherogenic trajectory than prior to pregnancy

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors

    Evidence of impaired bone quality in men with type 1 diabetes: A cross-sectional study

    Get PDF
    Objective Type 1 diabetes (T1D) is associated with substantial fracture risk. Bone mineral density (BMD) is, however, only modestly reduced, suggesting impaired bone microarchitecture and/or bone material properties. Yet, the skeletal abnormalities have not been uncovered. Men with T1D seem to experience a more pronounced bone loss than their female counterparts. Hence, we aimed to examine different aspects of bone quality in men with T1D. Design and Methods In this cross-sectional study, men with T1D and healthy male controls were enrolled. BMD (femoral neck, total hip, lumbar spine, whole body) and spine trabecular bone score (TBS) were measured by dual x-ray absorptiometry, and bone material strength index (BMSi) was measured by in vivo impact microindentation. HbA1c and bone turnover markers were analyzed. Results Altogether, 33 men with T1D (43 ± 12 years) and 28 healthy male controls (42 ± 12 years) were included. Subjects with T1D exhibited lower whole-body BMD than controls (P = 0.04). TBS and BMSi were attenuated in men with T1D vs controls (P = 0.016 and P = 0.004, respectively), and T1D subjects also had a lower bone turnover. The bone parameters did not differ between subjects with or without diabetic complications. Duration of disease correlated negatively with femoral neck BMD but not with TBS or BMSi. Conclusions This study revealed compromised bone material strength and microarchitecture in men with T1D. Moreover, our data confirm previous studies which found a modest decrease in BMD and low bone turnover in subjects with T1D. Accordingly, bone should be recognized as a target of diabetic complications

    Subclinical hypothyroidism and the risk of coronary heart disease and mortality.

    Get PDF
    CONTEXT: Data regarding the association between subclinical hypothyroidism and cardiovascular disease outcomes are conflicting among large prospective cohort studies. This might reflect differences in participants' age, sex, thyroid-stimulating hormone (TSH) levels, or preexisting cardiovascular disease. OBJECTIVE: To assess the risks of coronary heart disease (CHD) and total mortality for adults with subclinical hypothyroidism. DATA SOURCES AND STUDY SELECTION: The databases of MEDLINE and EMBASE (1950 to May 31, 2010) were searched without language restrictions for prospective cohort studies with baseline thyroid function and subsequent CHD events, CHD mortality, and total mortality. The reference lists of retrieved articles also were searched. DATA EXTRACTION: Individual data on 55,287 participants with 542,494 person-years of follow-up between 1972 and 2007 were supplied from 11 prospective cohorts in the United States, Europe, Australia, Brazil, and Japan. The risk of CHD events was examined in 25,977 participants from 7 cohorts with available data. Euthyroidism was defined as a TSH level of 0.50 to 4.49 mIU/L. Subclinical hypothyroidism was defined as a TSH level of 4.5 to 19.9 mIU/L with normal thyroxine concentrations. RESULTS: Among 55,287 adults, 3450 had subclinical hypothyroidism (6.2%) and 51,837 had euthyroidism. During follow-up, 9664 participants died (2168 of CHD), and 4470 participants had CHD events (among 7 studies). The risk of CHD events and CHD mortality increased with higher TSH concentrations. In age- and sex-adjusted analyses, the hazard ratio (HR) for CHD events was 1.00 (95% confidence interval [CI], 0.86-1.18) for a TSH level of 4.5 to 6.9 mIU/L (20.3 vs 20.3/1000 person-years for participants with euthyroidism), 1.17 (95% CI, 0.96-1.43) for a TSH level of 7.0 to 9.9 mIU/L (23.8/1000 person-years), and 1.89 (95% CI, 1.28-2.80) for a TSH level of 10 to 19.9 mIU/L (n = 70 events/235; 38.4/1000 person-years; P <.001 for trend). The corresponding HRs for CHD mortality were 1.09 (95% CI, 0.91-1.30; 5.3 vs 4.9/1000 person-years for participants with euthyroidism), 1.42 (95% CI, 1.03-1.95; 6.9/1000 person-years), and 1.58 (95% CI, 1.10-2.27, n = 28 deaths/333; 7.7/1000 person-years; P = .005 for trend). Total mortality was not increased among participants with subclinical hypothyroidism. Results were similar after further adjustment for traditional cardiovascular risk factors. Risks did not significantly differ by age, sex, or preexisting cardiovascular disease. CONCLUSIONS: Subclinical hypothyroidism is associated with an increased risk of CHD events and CHD mortality in those with higher TSH levels, particularly in those with a TSH concentration of 10 mIU/L or greater
    corecore