304 research outputs found
Optical and Near-Infrared Radial Velocity Content of M Dwarfs: Testing Models with Barnard's Star
High precision radial velocity (RV) measurements have been central in the
study of exoplanets during the last two decades, from the early discovery of
hot Jupiters, to the recent mass measurements of Earth-sized planets uncovered
by transit surveys. While optical radial-velocity is now a mature field, there
is currently a strong effort to push the technique into the near-infrared (nIR)
domain (chiefly , , and band passes) to probe planetary systems
around late-type stars. The combined lower mass and luminosity of M dwarfs
leads to an increased reflex RV signal for planets in the habitable zone
compared to Sun-like stars. The estimates on the detectability of planets rely
on various instrumental characteristics, but also on a prior knowledge of the
stellar spectrum. While the overall properties of M dwarf spectra have been
extensively tested against observations, the same is not true for their
detailed line profiles, which leads to significant uncertainties when
converting a given signal-to-noise ratio to a corresponding RV precision as
attainable on a given spectrograph. By combining archival CRIRES and HARPS data
with ESPaDOnS data of Barnard's star, we show that state-of-the-art atmosphere
models over-predict the and -band RV content by more than a factor of
, while under-predicting the and -band content by half.Comment: accepted for publication in A
Telluric-line subtraction in high-accuracy velocimetry: a PCA-based approach
Optical velocimetry has led to the detection of more than 500 planets to date
and there is a strong effort to push m/s velocimetry to the near-infrared to
access cooler and lighter stars. The presence of numerous telluric absorption
lines in the nIR brings an important challenge. As the star's barycentric
velocity varies through the year, the telluric absorption lines effectively
varies in velocity relative to the star's spectrum by the same amount leading
to important systematic RV offsets. We present a novel principal component
analysis-based approach for telluric line subtraction and demonstrated its
effectiveness with archival HARPS data for GJ436 and {\tau} Ceti, over parts of
the R-band that contain strong telluric absorption lines. The main results are:
1) a better RV accuracy with excluding only a few percentage of the domain, 2)
better use of the entire spectrum to measure RV and 3) a higher telescope time
efficency by using A0V telluric standard from telescope archive.Comment: Presented at SPIE Astronomical Telescopes + Instrumentation 201
Strong HI Lyman- variations from the 11 Gyr-old host star Kepler-444: a planetary origin ?
Kepler-444 provides a unique opportunity to probe the atmospheric composition
and evolution of a compact system of exoplanets smaller than the Earth. Five
planets transit this bright K star at close orbital distances, but they are too
small for their putative lower atmosphere to be probed at optical/infrared
wavelengths. We used the Space Telescope Imaging Spectrograph instrument
onboard the Hubble Space Telescope to search for the signature of the planet's
upper atmospheres at six independent epochs in the Ly- line. We detect
significant flux variations during the transits of both Kepler-444e and f
(~20%), and also at a time when none of the known planets was transiting
(~40%). Variability in the transition region and corona of the host star might
be the source of these variations. Yet, their amplitude over short time scales
(~2-3 hours) is surprisingly strong for this old (11.2+-1.0Gyr) and apparently
quiet main-sequence star. Alternatively, we show that the in-transits
variations could be explained by absorption from neutral hydrogen exospheres
trailing the two outer planets (Kepler-444e and f). They would have to contain
substantial amounts of water to replenish such hydrogen exospheres, which would
reveal them as the first confirmed ocean-planets. The out-of-transit
variations, however, would require the presence of a yet-undetected Kepler-444g
at larger orbital distance, casting doubt on the planetary origin scenario.
Using HARPS-N observations in the sodium doublet, we derived the properties of
two Interstellar Medium clouds along the line-of-sight toward Kepler-444. This
allowed us to reconstruct the stellar Ly- line profile and to estimate
the XUV irradiation from the star, which would still allow for a moderate mass
loss from the outer planets after 11.2Gyr. Follow-up of the system at XUV
wavelengths will be required to assess this tantalizing possibility.Comment: Accepted for publication in A&A Name of the system added to the title
in most recent versio
Espectroscopia de transmisión con telescopios terrestres: El caso de HD209458B
Tesis para optar al grado de Magíster en Ciencias Mención AstronomíaEste trabajo de investigaci on se enmarca en el t opico de planetas extrasolares y la caracterizaci on de sus
atm osferas. A la fecha, m as de 600 exoplanetas han sido descubiertos mediante distintas t ecnicas, siendo
la de los tr ansitos la de mayor inter es para el prop osito de esta investigaci on.
Durante el tr ansito de un exoplaneta frente a su estrella, en la luz que recibimos del sistema existir an
l neas espectrales debidas a la presencia de una atm osfera opticamente delgada que es atravesada por los
fotones provenientes de la estrella. Para el estudio elegimos el sistema HD209458, donde el tipo espectral
de la estrella es G0V (V=7.65) y el exoplaneta es un hot-Jupiter al que se le ha detectado atm osfera
(Charbonneau et al., 2002; Vidal-Madjar et al., 2003, 2004; Lecavelier Des Etangs et al., 2008; D esert
et al., 2008; Schlawin et al., 2010; Beaulieu et al., 2010). Este objeto es, hasta ahora, el m as analizado
por ser el que mejor oportunidades entrega, en cuanto a contraste, para el an alisis de su atm osfera. El
objetivo de esta tesis es detectar, identi car y caracterizar l neas espectrales debidas a la atm osfera del
exoplaneta usando datos tomados con telescopios terrestres.
La investigaci on se llev o a cabo con datos del archivo p ublico de VLT+UVES (ESO) y Subaru+HDS
(NAOJ). Para poder encontrar l neas espectrales que se deban a la atm osfera de un exoplaneta se us o es-
pectroscopia de transmisi on. Sin embargo, al tratarse de datos adquiridos mediante telescopios terrestres,
existen ciertas l neas producidas por la atm osfera de la Tierra que para este prop osito contaminan el
espectro de transmisi on. Por tanto, el m etodo a seguir tiene que ser capaz de identi car cu ales son las
l neas tel uricas, para as poder removerlas de cada espectro y no confundirlas con nuestras l neas espectrales
de inter es principal. Por ultimo, un an alisis bootstrap se utiliza para dar un respaldo estad stico a
posibles detecciones.
La importancia de este trabajo radica en que usando bases de datos con informaci on de las transiciones
presentes en un determinado rango espectral, se automatiza el rastreo de l neas espectrales
en busca de las evidencias que dejan las atmosferas de exoplanetas, especialmente en un ambiente tan
din amico como lo es este area de la Astronom a. Adem as, es de gran relevancia la aplicaci on de nuevas
t ecnicas para manejar correctamente los efectos que produce nuestra la atm ósfera de la Tierra en el caso
de datos tomados con telescopios terrestres
Recherche de planètes habitables autour de naines M
Since the first detection of an extrasolar planet orbiting a Sun-like star by Mayor and Queloz (1995), more than 1500 have been discovered. Enormous interest is currently focused on finding and characterising Earth-like planets, in particular those located in the habitable zone of their host star (defined as the distance from the host star where the planet temperature allows liquid water to flow on its surface). Both the detection of Earth-like planets, and the search for biomarkers in their atmospheres are among the main objectives of the twenty-first century's astronomy. The method known as radial velocities (RV), that consists in the measure of the star's reflex motion induced by orbiting planets, is a promising technique to achieve that quest.The main difficulties with the RV technique are the needs of an extremely stable spectrograph, a correct understanding of stellar activity (which can mimic the effect of a planet), a careful treatment of our Earth's atmosphere (which inevitable imprints spectra taken from the ground), and the need to dispose of a powerful algorithm to extract as much Doppler information as possible from the recorded spectra. Search for planets orbiting very low-mass stars (M dwarfs) can more easily reach the goal of detecting low-mass planets in the habitable zone of their parent star, compared to solar-type stars. Indeed, everything else being equal, a lower mass of the host star implies a larger reflex motion, and thus a larger RV amplitude. Moreover, the lower luminosity of M dwarfs compared to Sun-like stars, implies shorter orbital periods from planets in the habitable zone (~50 days against ~360 days, for M dwarfs compared to solar-type stars, respectively), resulting again in a larger RV amplitude. A RV precision of ~1 m/s allows a planet detection in the habitable zone of an M dwarf, whereas ~0.1 m/s is required in the case of a solar-type stars.This thesis aims to optimise the RV extraction from HARPS high-resolution spectra (and to open similar analysis on other instruments like SOPHIE, HARPS-N and the upcoming infrared spectrograph SPIRou -- to be commissioned to the 3.6-m CFH-Telescope). The effects of stellar activity will also be analysed, and contextualised in the RV technique. Stellar activity tracers are used to reject false detections or to study the relationships between the stellar magnetic activity and rotation. In this thesis (Chap.ref{chap:mag_activity}) I calibrate for the first time the ratio between the Ca textrm{small II} Htextrm{small &}K chromospheric lines and the bolometric luminosity for M dwarfs. I determine a relationship between the R^prime_{HK}-index and the rotation period of M dwarfs. In chapter~ref{chap:template_matching} I describe my algorithm to extract RVs through a chi^2-minimisation between a stellar template and the observed spectra. I demonstrate the improved accuracy of this method. Telluric spectral lines also affect the measurements of RV and are taken into account in the analysis procedures. I tested these methods on systems with planetary candidates, and for some systems, I took in charge the Keplerian analysis.Depuis la première détection d'une planète extrasolaire autour d'une étoile de type solaire par Mayor et Queloz (1995), plus de 1500 planètes ont été découverts. Actuellement il existe un énorme intérêt à découvrir et caractériser des planètes semblables à la Terre, en particulier celles situées dans la zone habitable de leur étoile hôte (définie comme la distance à l'étoile hôte où la température de la planète permet l'existence d'eau liquide à la surface). La détection de planètes de type terrestre, et la recherche de biomarqueurs dans leurs atmosphères sont parmi les principaux objectifs de l'astronomie du vingt et unième siècle. La méthode des vitesses radiales (VR), consistant à mesurer le mouvement réflexe de l'étoile induit par des planètes en orbite, est une remarquable technique pour atteindre cet objectif.Pour atteindre les précisions nécessaire à la detection de telles planètes il est absolument nécessaire de concevoir des spectrographes extrêmement stables, d'avoir une très bonne compréhension de l'activité stellaire (qui peut mimer l'effet d'une planète), d'effectuer un traitement soigneux de l'atmosphère terrestre (laquelle inévitablement laisse des empreintes dans les spectres acquis depuis le sol), et de disposer d'une puissante technique pour extraire, à partir des spectres, autant d'information Doppler que possible. La recherche de planètes orbitant autour des étoiles de très faible masse, plutôt qu'autour des étoiles de type solaire, permet d'aborder dès maintenant la détection de planètes de faible masse dans la zone habitable. En effet, en gardant tout les autres paramètres égaux, le mouvement réflexe (et donc l'amplitude de la variation VR) sera plus grande si l'étoile centrale est de très faible masse. De plus les naines M ont une plus faible luminosité que les étoiles de type solaire, il en resulte des périodes orbitales courtes des planètes dans la zone habitable (~50 jours pour les naines M contre ~360 jours pour des étoiles de type solaire), entraînant à nouveau en une plus grande amplitude des VR. Une précision de ~1 m/s en VR permet la détection d'une planète dans la zone habitable d'une naine M, alors que ~0.1 m/s sont nécessaire dans le cas d'une étoile de type solaire.Cette thèse vise à optimiser l'extraction de VR des spectres des naines M à haute résolution acquis avec le spectrographe HARPS (avec une possibilité d'applications futures sur d'autres instruments comme SOPHIE, HARPS-N et le prochain spectrographe infrarouge SPIRou - prochainement mis en service au CFHT). Les effets de l'activité stellaire des naines M seront également analysées, dans le contexte de la technique des VR. Divers traceurs d'activité stellaire sont utilisés pour rejeter des fausses détections ou pour étudier les relations entre l'activité magnétique et la rotation. Dans cette thèse (Chap. 3) je calibre pour la première fois le flux dans les raies H et K du Calcium en fonction de la luminosité bolométrique et je détermine la relation entre cet estimateur R'HK et la période de rotation des naines M. Dans le chapitre 4 je décris l'implémentation d'une méthode d'extraction de VR par une minimisation du Chi-deux entre un template spectral et les spectres observés. Je démontre que cette méthode est plus précise que celle classiquement utilisée. Les raies telluriques qui affectent les mesures VR sont prises en compte dans les procédures d'analyse. Ces méthodes sont testées sur des systèmes avec des candidats planétaires, je discuterais l'analyse de certains de ces systèmes
The HARPS search for southern extra-solar planets XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293
Context. Low mass stars are currently the best targets for searches for rocky
planets in the habitable zone of their host star. Over the last 13 years,
precise radial velocities measured with the HARPS spectrograph have identified
over a dozen super-Earths and Earth-mass planets (msin i<10Mearth ) around M
dwarfs, with a well understood selection function. This well defined sample
informs on their frequency of occurrence and on the distribution of their
orbital parameters, and therefore already constrains our understanding of
planetary formation. The subset of these low-mass planets that were found
within the habitable zone of their host star also provide prized targets for
future atmospheric biomarkers searches. Aims. We are working to extend this
planetary sample to lower masses and longer periods through dense and long-term
monitoring of the radial velocity of a small M dwarf sample. Methods. We
obtained large numbers of HARPS spectra for the M dwarfs GJ 3138, GJ 3323, GJ
273, GJ 628 and GJ 3293, from which we derived radial velocities (RVs) and
spectroscopic activity indicators. We searched them for variabilities,
periodicities, Keplerian modulations and correlations, and attribute the
radial-velocity variations to combinations of planetary companions and stellar
activity. Results. We detect 12 planets, of which 9 are new with masses ranging
from 1.17 to 10.5 Mearth . Those planets have relatively short orbital periods
(P<40 d), except two of them with periods of 217.6 and 257.8 days. Among these
systems, GJ 273 harbor two planets with masses close to the one of the Earth.
With a distance of 3.8 parsec only, GJ 273 is the second nearest known
planetary system - after Proxima Centauri - with a planet orbiting the
circumstellar habitable zone.Comment: 19 pages, 24 figures. Astronomy and Astrophysics in pres
Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit
The bright M dwarf K2-18 at 34 pc is known to host a transiting
super-Earth-sized planet orbiting within the star's habitable zone; K2-18b.
Given the superlative nature of this system for studying an exoplanetary
atmosphere receiving similar levels of insolation as the Earth, we aim to
characterize the planet's mass which is required to interpret atmospheric
properties and infer the planet's bulk composition. We obtain precision radial
velocity measurements with the HARPS spectrograph and couple those measurements
with the K2 photometry to jointly model the observed radial velocity variation
with planetary signals and a radial velocity jitter model based on Gaussian
process regression. We measure the mass of K2-18b to be
M with a bulk density of g/cm which may correspond
to a predominantly rocky planet with a significant gaseous envelope or an ocean
planet with a water mass fraction %. We also find strong evidence
for a second, warm super-Earth K2-18c at days with a semi-major axis
2.4 times smaller than the transiting K2-18b. After re-analyzing the available
light curves of K2-18 we conclude that K2-18c is not detected in transit and
therefore likely has an orbit that is non-coplanar with K2-18b. A suite of
dynamical integrations with varying simulated orbital eccentricities of the two
planets are used to further constrain each planet's eccentricity posterior from
which we measure and at 99% confidence. The discovery
of the inner planet K2-18c further emphasizes the prevalence of multi-planet
systems around M dwarfs. The characterization of the density of K2-18b reveals
that the planet likely has a thick gaseous envelope which along with its
proximity to the Solar system makes the K2-18 planetary system an interesting
target for the atmospheric study of an exoplanet receiving Earth-like
insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in
Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom
The HARPS search for southern extra-solar planets XXXV. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543
Context. Planetary companions of a fixed mass induce larger amplitude reflex
motions around lower-mass stars, which helps make M dwarfs excellent targets
for extra-solar planet searches. State of the art velocimeters with 1m/s
stability can detect very low-mass planets out to the habitable zone of these
stars. Low-mass, small, planets are abundant around M dwarfs, and most known
potentially habitable planets orbit one of these cool stars.
Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m
telescope at La Silla observatory makes a major contribution to this sample.
Methods. We present here dense radial velocity (RV) time series for three M
dwarfs observed over years: GJ 3293 (0.42M), GJ 3341
(0.47M), and GJ 3543 (0.45M). We extract those RVs through
minimum matching of each spectrum against a high S/N ratio stack of
all observed spectra for the same star. We then vet potential orbital signals
against several stellar activity indicators, to disentangle the Keplerian
variations induced by planets from the spurious signals which result from
rotational modulation of stellar surface inhomogeneities and from activity
cycles.
Results. Two Neptune-mass planets - and
- orbit GJ 3293 with periods d and
d, possibly together with a super-Earth -
- with period . A super-Earth
- - orbits GJ 3341 with . The RV
variations of GJ 3543, on the other hand, reflect its stellar activity rather
than planetary signals.Comment: Accepted for publication in A&A, 19 pages, 12 figures, 7 table
Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph
Context. The temperate Earth-mass planet Proxima b is the closest exoplanet
to Earth and represents what may be our best ever opportunity to search for
life outside the Solar System. Aims. We aim at directly detecting Proxima b and
characterizing its atmosphere by spatially resolving the planet and obtaining
high-resolution reflected-light spectra. Methods. We propose to develop a
coupling interface between the SPHERE high-contrast imager and the new ESPRESSO
spectrograph, both installed at ESO VLT. The angular separation of 37 mas
between Proxima b and its host star requires the use of visible wavelengths to
spatially resolve the planet on a 8.2-m telescope. At an estimated
planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely
challenging to detect with SPHERE alone. However, the combination of a
~10^3-10^4 contrast enhancement from SPHERE to the high spectral resolution of
ESPRESSO can reveal the planetary spectral features and disentangle them from
the stellar ones. Results. We find that significant but realistic upgrades to
SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a
measurement of its true mass and albedo in 20-40 nights of telescope time,
assuming an Earth-like atmospheric composition. Moreover, it will be possible
to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm,
and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2
could be made in about 60 nights of telescope time. Those would need to be
spread over 3 years considering optimal observability conditions for the
planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO
synergy represent a unique opportunity to detect biosignatures on an exoplanet
in the near future. It is also a crucial pathfinder experiment for the
development of Extremely Large Telescopes and their instruments (abridged).Comment: 16 pages, 7 figures, revised version accepted to A&
- …
