525 research outputs found

    Strong HI Lyman-α\alpha variations from the 11 Gyr-old host star Kepler-444: a planetary origin ?

    Full text link
    Kepler-444 provides a unique opportunity to probe the atmospheric composition and evolution of a compact system of exoplanets smaller than the Earth. Five planets transit this bright K star at close orbital distances, but they are too small for their putative lower atmosphere to be probed at optical/infrared wavelengths. We used the Space Telescope Imaging Spectrograph instrument onboard the Hubble Space Telescope to search for the signature of the planet's upper atmospheres at six independent epochs in the Ly-α\alpha line. We detect significant flux variations during the transits of both Kepler-444e and f (~20%), and also at a time when none of the known planets was transiting (~40%). Variability in the transition region and corona of the host star might be the source of these variations. Yet, their amplitude over short time scales (~2-3 hours) is surprisingly strong for this old (11.2+-1.0Gyr) and apparently quiet main-sequence star. Alternatively, we show that the in-transits variations could be explained by absorption from neutral hydrogen exospheres trailing the two outer planets (Kepler-444e and f). They would have to contain substantial amounts of water to replenish such hydrogen exospheres, which would reveal them as the first confirmed ocean-planets. The out-of-transit variations, however, would require the presence of a yet-undetected Kepler-444g at larger orbital distance, casting doubt on the planetary origin scenario. Using HARPS-N observations in the sodium doublet, we derived the properties of two Interstellar Medium clouds along the line-of-sight toward Kepler-444. This allowed us to reconstruct the stellar Ly-α\alpha line profile and to estimate the XUV irradiation from the star, which would still allow for a moderate mass loss from the outer planets after 11.2Gyr. Follow-up of the system at XUV wavelengths will be required to assess this tantalizing possibility.Comment: Accepted for publication in A&A Name of the system added to the title in most recent versio

    The HARPS search for southern extra-solar planets XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293

    Full text link
    Context. Low mass stars are currently the best targets for searches for rocky planets in the habitable zone of their host star. Over the last 13 years, precise radial velocities measured with the HARPS spectrograph have identified over a dozen super-Earths and Earth-mass planets (msin i<10Mearth ) around M dwarfs, with a well understood selection function. This well defined sample informs on their frequency of occurrence and on the distribution of their orbital parameters, and therefore already constrains our understanding of planetary formation. The subset of these low-mass planets that were found within the habitable zone of their host star also provide prized targets for future atmospheric biomarkers searches. Aims. We are working to extend this planetary sample to lower masses and longer periods through dense and long-term monitoring of the radial velocity of a small M dwarf sample. Methods. We obtained large numbers of HARPS spectra for the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628 and GJ 3293, from which we derived radial velocities (RVs) and spectroscopic activity indicators. We searched them for variabilities, periodicities, Keplerian modulations and correlations, and attribute the radial-velocity variations to combinations of planetary companions and stellar activity. Results. We detect 12 planets, of which 9 are new with masses ranging from 1.17 to 10.5 Mearth . Those planets have relatively short orbital periods (P<40 d), except two of them with periods of 217.6 and 257.8 days. Among these systems, GJ 273 harbor two planets with masses close to the one of the Earth. With a distance of 3.8 parsec only, GJ 273 is the second nearest known planetary system - after Proxima Centauri - with a planet orbiting the circumstellar habitable zone.Comment: 19 pages, 24 figures. Astronomy and Astrophysics in pres

    The HARPS search for southern extra-solar planets XXXV. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543

    Full text link
    Context. Planetary companions of a fixed mass induce larger amplitude reflex motions around lower-mass stars, which helps make M dwarfs excellent targets for extra-solar planet searches. State of the art velocimeters with ∼\sim1m/s stability can detect very low-mass planets out to the habitable zone of these stars. Low-mass, small, planets are abundant around M dwarfs, and most known potentially habitable planets orbit one of these cool stars. Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m telescope at La Silla observatory makes a major contribution to this sample. Methods. We present here dense radial velocity (RV) time series for three M dwarfs observed over ∼5\sim5 years: GJ 3293 (0.42M⊙_\odot), GJ 3341 (0.47M⊙_\odot), and GJ 3543 (0.45M⊙_\odot). We extract those RVs through minimum χ2\chi^2 matching of each spectrum against a high S/N ratio stack of all observed spectra for the same star. We then vet potential orbital signals against several stellar activity indicators, to disentangle the Keplerian variations induced by planets from the spurious signals which result from rotational modulation of stellar surface inhomogeneities and from activity cycles. Results. Two Neptune-mass planets - msin(i)=1.4±0.1msin(i)=1.4\pm0.1 and 1.3±0.1Mnept1.3\pm0.1M_{nept} - orbit GJ 3293 with periods P=30.60±0.02P=30.60\pm0.02 d and P=123.98±0.38P=123.98\pm0.38 d, possibly together with a super-Earth - msin(i)∼7.9±1.4M⊕msin(i)\sim7.9\pm1.4M_\oplus - with period P=48.14±0.12  dP=48.14\pm0.12\;d. A super-Earth - msin(i)∼6.1M⊕msin(i)\sim6.1M_\oplus - orbits GJ 3341 with P=14.207±0.007  dP=14.207\pm0.007\;d. The RV variations of GJ 3543, on the other hand, reflect its stellar activity rather than planetary signals.Comment: Accepted for publication in A&A, 19 pages, 12 figures, 7 table

    A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b

    Full text link
    Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims. We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods. We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 {\mu}m. Adding the high precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar effects on the flux variation. Results. We present a refined radius estimate of RP=4.10 +/- 0.16 R_Earth, mass MP=25.4 +/- 2.1 M_Earth and eccentricity e= 0.162 +/- 0.004 for GJ 436b. Our measured transit depths remain constant in time and wavelength, in disagreement with the results of previous studies. In addition, we find that the post-occultation flare-like structure at 3.6 {\mu}m that led to divergent results on the occultation depth measurement is spurious. We obtain occultation depths at 3.6, 5.8, and 8.0 {\mu}m that are shallower than in previous works, in particular at 3.6 {\mu}m. However, these depths still appear consistent with a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although perhaps less than previously thought. We find no evidence for a potential planetary companion, stellar activity, nor for a stellar spin-orbit misalignment. [ABRIDGED]Comment: 25 pages, 26 figures, 8 tables, accepted for publication in A&

    Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis

    Get PDF
    In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c

    A super-Earth orbiting the nearby M-dwarf GJ 536

    Full text link
    We report the discovery of a super-Earth orbiting the star GJ 536 based on the analysis of the radial-velocity time series from the HARPS and HARPS-N spectrographs. GJ 536 b is a planet with a minimum mass M sin ii of 5.36 +- 0.69 Me with an orbital period of 8.7076 +- 0.0025 days at a distance of 0.066610(13) AU, and an orbit that is consistent with circular. The host star is the moderately quiet M1 V star GJ 536, located at 10 pc from the Sun. We find the presence of a second signal at 43 days that we relate to stellar rotation after analysing the time series of Ca II H&K and H alpha spectroscopic indicators and photometric data from the ASAS archive. We find no evidence linking the short period signal to any activity proxy. We also tentatively derived a stellar magnetic cycle of less than 3 years.Comment: 14 pages, 14 figures, 5 tables, Accepted in A&

    Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit

    Full text link
    The bright M dwarf K2-18 at 34 pc is known to host a transiting super-Earth-sized planet orbiting within the star's habitable zone; K2-18b. Given the superlative nature of this system for studying an exoplanetary atmosphere receiving similar levels of insolation as the Earth, we aim to characterize the planet's mass which is required to interpret atmospheric properties and infer the planet's bulk composition. We obtain precision radial velocity measurements with the HARPS spectrograph and couple those measurements with the K2 photometry to jointly model the observed radial velocity variation with planetary signals and a radial velocity jitter model based on Gaussian process regression. We measure the mass of K2-18b to be 8.0±1.98.0 \pm 1.9 M⊕_{\oplus} with a bulk density of 3.7±0.93.7 \pm 0.9 g/cm3^3 which may correspond to a predominantly rocky planet with a significant gaseous envelope or an ocean planet with a water mass fraction ≳50\gtrsim 50%. We also find strong evidence for a second, warm super-Earth K2-18c at ∼9\sim 9 days with a semi-major axis 2.4 times smaller than the transiting K2-18b. After re-analyzing the available light curves of K2-18 we conclude that K2-18c is not detected in transit and therefore likely has an orbit that is non-coplanar with K2-18b. A suite of dynamical integrations with varying simulated orbital eccentricities of the two planets are used to further constrain each planet's eccentricity posterior from which we measure eb<0.43e_b < 0.43 and ec<0.47e_c < 0.47 at 99% confidence. The discovery of the inner planet K2-18c further emphasizes the prevalence of multi-planet systems around M dwarfs. The characterization of the density of K2-18b reveals that the planet likely has a thick gaseous envelope which along with its proximity to the Solar system makes the K2-18 planetary system an interesting target for the atmospheric study of an exoplanet receiving Earth-like insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom

    Low X-Ray Luminosity Galaxy Clusters: Main goals, sample selection, photometric and spectroscopic observations

    Get PDF
    We present the study of nineteen low X-ray luminosity galaxy clusters (LX∼_X \sim 0.5--45 ×\times 104310^{43} erg s−1^{-1}), selected from the ROSAT Position Sensitive Proportional Counters (PSPC) Pointed Observations (Vikhlinin et al. 1998) and the revised version of Mullis et al. (2003) in the redshift range of 0.16 to 0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. With the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogues contain the PSF and aperture magnitudes of galaxies within the 90\% completeness limit. They are used together with structural parameters to study the galaxy morphology and to estimate photometric redshifts. With the spectroscopy, the derived galaxy velocity dispersion of our clusters ranged from 507 km~s−1^{-1} for [VMF98]022 to 775 km~s−1^{-1} for [VMF98]097 with signs of substructure. Cluster membership has been extensively discussed taking into account spectroscopic and photometric redshift estimates. In this sense, members are the galaxies within a projected radius of 0.75 Mpc from the X-ray mission peak and with cluster centric velocities smaller than the cluster velocity dispersion or 6000 km~s−1^{-1}, respectively. These results will be used in forthcoming papers to study, among the main topics, the red cluster sequence, blue cloud and green populations; the galaxy luminosity function and cluster dynamics.Comment: 13 pages, 6 tables, 9 figures. Uses emulateapj. Accepted for publication in The Astronomical Journal. Some formatting errors fixe

    Characterisation of stellar activity of M dwarfs. I. Long-timescale variability in a large sample and detection of new cycles

    Full text link
    M dwarfs are active stars that exhibit variability in chromospheric emission and photometry at short and long timescales, including long cycles that are related to dynamo processes. This activity also impacts the search for exoplanets because it affects the radial velocities. We analysed a large sample of 177 M dwarfs observed with HARPS (2003-2020) in order to characterise the long-term variability of these stars. We compared the variability obtained in three chromospheric activity indices (Ca II H & K, the Na D doublet, and Halpha) and with ASAS photometry. We focused on the detailed analysis of the chromospheric emission based on linear, quadratic, and sinusoidal models. We used various tools to estimate the significance of the variability and to quantify the improvement brought by the models. In addition, we analysed complementary photometric time series for the most variable stars to be able to provide a broader view of the long-term variability in M dwarfs. We find that most stars are significantly variable, even the quietest stars. Most stars in our sample (75%) exhibit a long-term variability, which manifests itself mostly through linear or quadratic variability, although the true behaviour may be more complex. We found significant variability with estimated timescales for 24 stars, and estimated the lower limit for a possible cycle period for an additional 9 stars that were not previously published. We found evidence of complex variability because more than one long-term timescale may be present for at least 12 stars, together with significant differences between the behaviour of the three activity indices. This complexity may also be the source of the discrepancies observed between previous publications. We conclude that long-term variability is present for all spectral types and activity level in M dwarfs, without a significant trend with spectral type or mean activity level.Comment: article accepted in Astronomy and Astrophysics, February 2023, 31 page
    • …
    corecore