39 research outputs found

    Myositis ossificans : another condition with USP6 rearrangement, providing evidence of a relationship with nodular fasciitis and aneurysmal bone cyst

    Get PDF
    Myositis ossificans is defined as a self-limiting pseudotumor composed of reactive hypercellular fibrous tissue and bone. USP6 rearrangements have been identified as a consistent genetic driving event in aneurysmal bone cyst and nodular fasciitis. It is therefore an integral part of the diagnostic workup when dealing with (myo)fibroblastic lesions of soft tissue and bone. Two cases of myositis ossificans with USP6 rearrangement were published so far. We determine herein the incidence of USP6 rearrangement in myositis ossificans using USP6 fluorescence in situ hybridization analysis (FISH). Of the 11 cases included, seven patients were female and four were male. Age ranged from 6 to 56 years (mean 27 years). Lesions were located in the thigh (n = 5), knee (n = 1), lower leg (n = 1), lower arm (n = 1), perineum (n = 1), gluteal (n = 1) and thoracic wall (n = 1). All assessable cases except one (8/9) showed rearrangement of USP6 providing evidence that myositis ossificans is genetically related to nodular fasciitis and aneurysmal bone cyst

    Kaposiform hemangioendothelioma and tufted angioma – (epi)genetic analysis including genome-wide methylation profiling

    Get PDF
    Kaposiform hemangioendothelioma (KHE) is a locally aggressive vascular condition of childhood and is dinicopathologically related to tufted angioma (TA), a benign skin lesion. Due to their rarity molecular data are scarce. We investigated 7 KHE and 3 TA by comprehensive mutational analysis and genome-wide methylation profiling and compared the clustering, also with vascular malformations. Lesions were from 7 females and 3 males. The age range was 2 months to 9 years with a median of 10 months. KHEs arose in the soft tissue of the thigh (n = 2), retroperitoneum (n = 1), thoracal/abdominal (n = 1), supraclavicular (n = 1) and neck (n = 1). One patient presented with multiple lesions without further information. Two patients developed a Kasabach-Merritt phenomenon. TAs originated in the skin of the shoulder (n = 2) and nose/forehead (n = 1). Of the 5 KHEs and 2 TAs investigated by DNA sequencing, one TA showed a hot spot mutation in NRAS, and one KHE a mutation in RAD50. Unsupervised hierarchical clustering analysis indicated a common methylation pattern of KHEs and TAs, which separated from the homogeneous methylation pattern of vascular malformations. In conclusion, methylation profiling provides further evidence for KHEs and TAs potentially forming a spectrum of one entity. Using next generation sequencing, heterogeneous mutations were found in a subset of cases (2/7) without the presence of GNA14 mutations, previously reported in KHE and TA

    Comprehensive routine diagnostic screening to identify predictive mutations, gene amplifications, and microsatellite instability in FFPE tumor material

    Get PDF
    Background: Sensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients. Although less material becomes available for testing, genetic markers are rapidly expanding. Simultaneous detection of predictive markers, including mutations, gene amplifications and MSI, will save valuable material, time and costs. Methods: Using a single-molecule molecular inversion probe (smMIP)-based targeted next-generation sequencing (NGS) approach, we developed an NGS panel allowing detection of predictive mutations in 33 genes, gene amplifications of 13 genes and microsatellite instability (MSI) by the evaluation of 55 microsatellite markers. The panel was designed to target all clinically relevant single and multiple nucleotide mutations in routinely available lung cancer, colorectal cancer, melanoma, and gastro-intestinal stromal tumor samples, but is useful for a broader set of tumor types. Results: The smMIP-based NGS panel was successfully validated and cut-off values were established for reliable gene amplification analysis (i.e. relative coverage ≥3) and MSI detection (≥30% unstable loci). After validation, 728 routine diagnostic tumor samples including a broad range of tumor types were sequenced with sufficient sensitivity (2.4% drop-out), including samples with low DNA input (< 10 ng; 88% successful), low tumor purity (5-10%; 77% successful), and cytological material (90% successful). 75% of these tumor samples showed ≥1 (likely) pathogenic mutation, including targetable mutations (e.g. EGFR, BRAF, MET, ERBB2, KIT, PDGFRA). Amplifications were observed in 5.5% of the samples, comprising clinically relevant amplifications (e.g. MET, ERBB2, FGFR1). 1.5% of the tumor samples were classified as MSI-high, including both MSI-prone and non-MSI-prone tumors. Conclusions: We developed a comprehensive workflow for predictive analysis of diagnostic tumor samples. The smMIP-based NGS analysis was shown suitable for limited amounts of histological and cytological material. As smMIP technology allows easy adaptation of panels, this approach can comply with the rapidly expanding molecular markers

    Multifocal occurrence of extra-abdominal desmoid type fibromatosis – A rare manifestation. A clinicopathological study of 6 sporadic cases and 1 hereditary case

    Get PDF
    Desmoid-type fibromatosis, also called desmoid tumor, is a locally aggressive myofibroblastic neoplasm that usually arises in deep soft tissue with significant potential for local recurrence. It displays an unpredictable clinical course. β-Catenin, the genetic key player of desmoid tumors shows nuclear accumulation due to mutations that preve

    FOXO3 Selectively Amplifies Enhancer Activity to Establish Target Gene Regulation

    Get PDF
    Forkhead box O (FOXO) transcription factors regulate diverse cellular processes, affecting tumorigenesis, metabolism, stem cell maintenance, and lifespan. We show that FOXO3 transcription regulation mainly proceeds through the most active subset of enhancers. In addition to the general distinction between “open” and “closed” chromatin, we show that the level of activity marks (H3K27ac, RNAPII, enhancer RNAs) of these open chromatin regions prior to FOXO3 activation largely determines FOXO3 DNA binding. Consequently, FOXO3 amplifies the levels of these activity marks and their absolute rather than relative changes associate best with FOXO3 target gene regulation. The importance of preexisting chromatin state in directing FOXO3 gene regulation, as shown here, provides a mechanism whereby FOXO3 can regulate cell-specific homeostasis. Genetic variation is reported to affect these chromatin signatures in a quantitative manner, and, in agreement, we observe a correlation between cancer-associated genetic variations and the amplitude of FOXO3 enhancer binding

    ESM_1.docx

    No full text
    Detailed description of the firms, solutions and clones used to examine the cases mentioned in the case report

    ESM_3 (figures of immunohistochemical staining)

    No full text
    Figures associated with the performed immunohistochemical staining of the sections used in the case report
    corecore