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SUMMARY

Forkhead box O (FOXO) transcription factors regu-
late diverse cellular processes, affecting tumori-
genesis, metabolism, stem cell maintenance, and
lifespan. We show that FOXO3 transcription regu-
lation mainly proceeds through the most active
subset of enhancers. In addition to the general
distinction between ‘‘open’’ and ‘‘closed’’ chromatin,
we show that the level of activity marks (H3K27ac,
RNAPII, enhancer RNAs) of these open chromatin
regions prior to FOXO3 activation largely deter-
mines FOXO3 DNA binding. Consequently, FOXO3
amplifies the levels of these activity marks and their
absolute rather than relative changes associate
best with FOXO3 target gene regulation. The impor-
tance of preexisting chromatin state in directing
FOXO3 gene regulation, as shown here, provides a
mechanism whereby FOXO3 can regulate cell-spe-
cific homeostasis. Genetic variation is reported to
affect these chromatin signatures in a quantitative
manner, and, in agreement, we observe a correlation
between cancer-associated genetic variations and
the amplitude of FOXO3 enhancer binding.

INTRODUCTION

The Forkhead box O (FOXO) family of transcription factors com-

prises FOXO1, FOXO3, FOXO4, and FOXO6. Multiple signaling

pathways converge on FOXOs, regulating their activity mainly

through posttranslational modifications and altering cellular

localization. Two conserved pathways function at the core of

FOXO regulation. In the presence of growth factors and insulin,

through PI3K/PKB signaling, FOXOs are inactivated by cyto-

plasmic retention. In contrast, FOXOs are activated in the

presence of oxidative stress (for a recent review, see Hedrick

et al., 2012). All FOXOs bind the same consensus sequence

(50-TGTTTAC-30) and FOXO activity regulates a plethora of target

genes (reviewed in van der Vos and Coffer, 2011). Genetic

studies in C. elegans, D. melanogaster, and mice have shed light

on the versatility of FOXO functions in vivo. FOXOs were shown
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to act as redundant tumor suppressors, to control glucose

homeostasis, and to be involved in immune cell regulation and

(cancer) stem cell maintenance (reviewed in Eijkelenboom and

Burgering, 2013). In model organisms, FOXO function also

greatly influences lifespan and variations in human FOXO3 are

associated with human longevity (reviewed in Kenyon, 2010).

At present, the cell-type-specific nature of FOXO transcriptional

output is attributed to the activity of specific signaling pathways,

resulting in different combinations of posttranslational modifica-

tions (Calnan and Brunet, 2008), and to functional and physical

interactions with other transcription factors (reviewed in van

der Vos and Coffer, 2008, 2011).

Enhancers are DNA elements driving cell-type-specific gene

expression and can be located at great distances from the genes

they regulate. They are bound by transcription factors, transcrip-

tional coactivators, and chromatin regulators and are considered

to modulate transcription from promoters through delivery of

factors that directly regulate transcription (reviewed in Ong and

Corces, 2011). Although genome-wide approaches have greatly

progressed the identification of enhancers and transcription fac-

tor binding events (for example, the ENCODE project; Bernstein

et al., 2012), the relationships among transcription factors, regu-

latory regions, and their contribution to gene expression are far

from completely understood. For example, transcription factor

binding does not necessarily result in regulation of gene expres-

sion and the majority of transcription factor binding events might

not actually be functional (reviewed in Spitz and Furlong, 2012).

Previously, we observed that the majority of FOXO3 peaks

occupy regions located distal from promoters. Given this large

number of FOXO3-bound regions, we aimed to study the role

of enhancers in FOXO3-mediated gene regulation and identify

features that classify the subset of binding events that actually

contribute to target gene regulation. We therefore generated

genome-wide profiles of chromatin modifications H3K4me1,

H3K4me3, and H3K27ac (histone H3 lysine 4 mono- and trime-

thylation and lysine 27 acetylation), identified ‘‘open’’ chromatin

through formaldehyde-assisted isolation of regulatory elements

sequencing (FAIRE-seq; Giresi et al., 2007), followed by massive

parallel sequencing, and analyzed transcriptional changes by

RNA sequencing (RNA-seq). Combined with previously gener-

ated FOXO3 and RNAPII genome-wide binding profiles, these

data sets provide a comprehensive overview of chromatin status

prior to and upon FOXO3 activation, combined with FOXO3 DNA
hors
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binding and transcriptional output. We show that the amplitude

of FOXO3 DNA binding to an enhancer determines FOXO3

output on the same enhancer, which is the local increase in

enhancer activity marks like H3K27Ac and RNAPII. In addition,

FOXO3 transcriptional output affecting target gene expression

also depends on the amplitude of FOXO3 binding. FOXO3

enhancer binding in turn is determined by a combination of

sequence content and chromatin context. Chromatin context

we define here as a quantitative feature, not merely a distinction

between open and ‘‘closed’’ chromatin but rather the levels of

activity marks at these open chromatin regions. We show that

it is not only the presence of Forkhead motifs and DNA accessi-

bility but also the levels of initial enhancer activity that affects

FOXO3 binding. As a result, FOXO3 preferentially binds to a

subset of enhancers that already display high activity marks prior

to FOXO3 induction, with binding levels reflecting the initial levels

of these marks and preexisting accessibility. Consequently,

FOXO3 amplifies the levels of initial enhancer activity marks,

with the greatest absolute changes on enhancers displaying

the highest initial levels. We show absolute rather than relative

change in enhancer activity marks has a better correlation with

target gene regulation. FOXO3-induced changes in enhancer

activity marks bridge FOXO3 enhancer binding with gene regula-

tion, since we show that only the ‘‘responsive’’ subset of FOXO3

enhancer binding events (with changes in enhancer activity

marks) is associated with target gene induction. Together, this

suggests that the result of individual FOXO3 binding events is

dictated by preexisting enhancer activity. Our integrative anal-

ysis of chromatin state and gene expression profiles both before

and after FOXO3 activation provides insight into the complex

relationship among transcription factor binding, the quantitative

features of chromatin state, and their influence on gene expres-

sion. Furthermore, it provides a perspective on FOXO function

that may explain how FOXOs, and FOXO3 in particular, can

contribute to cellular homeostasis and thereby affect lifespan

and disease.

RESULTS

FOXO3 Binds Enhancers and Induces an Active
Chromatin Profile
To study the transcriptional output of FOXO3 activation, we

required a system to rapidly and specifically activate FOXO3.

Physiological stimuli, which can activate FOXO (e.g., inhibition

of the PI3K/PKB axis), also influence parallel pathways, pos-

sibly confounding the global analysis of FOXO3 transcriptional

output. We and others have previously used DLD1-F3 cells

(also called DL23 cells) to study FOXO3 function. These colon

carcinoma cells contain a fusion of a constitutively active mutant

(FOXO3A3), lacking inhibitory PKB phosphorylation sites, fused

with the ligand binding domain of the estrogen receptor (ER)

(Kops et al., 2002), allowing rapid and specific induction by

4-OH tamoxifen (4OHT) (Littlewood et al., 1995). The ER domain

is transcriptionally inactive and the FOXO3-ER fusion protein

faithfully mimics endogenous FOXO3 (Eijkelenboom et al.,

2013). Therefore, the FOXO3-ER system provides a robust sys-

tem to specifically study the transcriptional output of the isolated

activation of a single transcription factor.
Cell Re
We have previously shown that the majority of FOXO3 peaks

are located beyond the immediate vicinity (>5 kb) of any

annotated transcription start site (TSS) (Eijkelenboom et al.,

2013). Given that initial analysis suggested binding of FOXO3

to enhancers and regulation of enhancer activity by FOXO3,

we analyzed enhancer regulation by FOXO3 in a systematic

manner. As enhancers can be discriminated from promoter

regions by high levels of H3K4me1 and low H3K4me3 (Heintz-

man et al., 2007, 2009) and active enhancers are marked

by H3K27ac (Creyghton et al., 2010), we performed chro-

matin immunoprecipitation with antibodies against H3K4me1,

H3K4me3, and H3K27ac followed by massive parallel se-

quencing (ChIP-seq) on DLD1-F3 cells, both before and

after FOXO3 activation. Combined with previously generated

FOXO3 and RNAPII genome-wide binding profiles (Eijkelen-

boom et al., 2013), this allows for an integrative genome-wide

analysis of FOXO3 DNA binding and transcriptional output

with chromatin context (an overview of our approach is depicted

in Figure S1A). First, we explored FOXO3 enhancer binding and

induced changes in enhancer activity. Based on H3K4 methyl-

ation status, we identified 37,051 enhancers, of which 5,731

overlap with previously identified FOXO3-bound regions (Fig-

ure 1A). A total of 65% of all FOXO3 peaks (6,489 out of 9,932

peaks) overlap with identified enhancers. FOXO3 binding in-

creases enhancer activity marks, as can be observed by local

increases in H3K27ac and RNAPII (Figure 1B), which is consis-

tent with previous observations on increased RNAPII signal at

intergenic FOXO3-bound regions (Eijkelenboom et al., 2013)

and a role as a transcriptional activator. Although FOXO has

been reported to act as a repressor in a limited number of

studies, previous genome-wide analyses by us and others in a

variety of systems have all shown FOXO generally acts as a tran-

scriptional activator, without significant evidence for a direct

role in repression (Alic et al., 2011; Eijkelenboom et al., 2013;

Riedel et al., 2013; Schuster et al., 2010; Webb et al., 2013).

This suggests that gene repression generally occurs through

DNA-binding-independent or secondary mechanisms. The rela-

tive depletion of both H3K4me1 and H3K27ac at the FOXO3

peak center prior to FOXO3 activation suggests that FOXO3

binds nucleosome-free regions. This was confirmed by ChIP-

seq on total histone H3, as well as FAIRE-seq (Figure S1B).

Changes in ChIP-seq signals were determined for all enhancers

and comparisons between FOXO3-bound and FOXO3-unbound

enhancers confirmed the activating output of FOXO3 binding

(Figures 1C and 1D). Both the H3K27ac and RNAPII occupancy

levels provide measures for enhancer activity, which allows us

to study local consequences of FOXO3 binding with two inde-

pendent parameters. To discriminate the RNAPII signal from

enhancers and transcribed genes, all subsequent analyses

involving RNAPII occupancy changes are performed on inter-

genic enhancers. These enhancers show very similar dynamics

(Figures 1C and 1D) and distribution profiles (Figure S1C)

compared with all enhancers. The outcome of FOXO3 binding

on H3K27ac and RNAPII levels varies, with no detectable

changes at a substantial proportion of regions. FOXO3-bound

and responsive enhancers are more conserved relative to the

FOXO-bound and unresponsive enhancers, indicating their bio-

logical relevance (Figure S1D).
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Figure 1. FOXO3 Binds Enhancers and

Increases Enhancer Activity Marks

(A) Overview of enhancers identified in DLD1-F3

cells and the overlap with FOXO3 bound genomic

locations. Intergenic enhancers do not overlap with

annotated transcripts.

(B) Average signals of FOXO3, H3K4me1, H3K27ac,

and RNAPII ChIP-seq profiles at FOXO3-bound

enhancers in DLD1-F3 cells both before and after

FOXO3 activation (4 hr 4OHT). Enhancers are

centered on the FOXO3 peak center. Untreated

signal in the FOXO3 graph represents background

signal from DLD1 cells.

(C and D) Normalized read density was determined

for H3K27ac and RNAPII (NRPKM) on all enhancers

and changes upon FOXO3 activation were calcu-

lated. Relative (log2, C) and absolute (linear, D)

changes in H3K27ac and RNAPII are shown for

FOXO3-unbound and FOXO3-bound enhancers in

boxplots with 5%–95% whiskers (p values are from

a two-tailed Mann-Whitney U test; ****p < 2.2 3

10�16). Enhancers were categorized based on

FOXO3 binding and location relative to annotated

transcripts and changes in H3K27ac and RNAPII

levels were determined (down, < �0.5; up low, 0.5

to 1.0; up med, 1.0 to 2.0; up high, > 2.0 for all

except absolute changes in H3K27ac in which

values are < �1.0, 1.0 to 2.0, 2.0 to 4.0, and > 4.0,

respectively; these cutoffs are used throughout this

study).

See also Figure S1.
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Figure 2. Absolute Changes in Enhancer Activity Marks Associate Most with FOXO3-Mediated Target Gene Regulation

(A and B) FOXO3-bound enhancers were categorized by H3K27ac changes (as in Figures 1C and 1D) and the changes in RNAPII occupancy of the proximate

gene, including all annotated transcripts, were calculated. Boxplot with 5%–95%whiskers are shown for all enhancers with a maximum enhancer-TSS distance

of 100 kb (A); p values from a two-tailed Mann-Whitney U test relative to unchanged (***p < 10�10, ****p < 10�15). Median values are shown for various enhancer-

TSS distance windows (B), with colors representing categories of H3K27ac.

(C) FOXO3-bound enhancers were divided in three groups, sorted for increasing changes in H3K27ac (L = low, M =medium, H = high). Formation of three groups

was separately performed for absolute changes (left to right) and relative changes (bottom to top), of which the combination results in nine categories. Relative

changes in RNAPII levels at adjacent genes are determined (%200 kb enhancer-TSS; table represents number of enhancers within each category). Categories

with most extreme values are shown to the right, with values between categories representing p values from a two-tailed Mann-Whitney U test.

See also Figure S2.
The FOXO3-Mediated Accumulation of Enhancer
Activity Marks Associates with Target Gene Regulation
Enhancers can associate with genes through looping and influ-

ence gene transcription (reviewed in Splinter and de Laat,

2011), and this also holds for some selected FOXO3-bound

enhancers and target genes (Eijkelenboom et al., 2013). To

determine if changes in enhancer activity marks are associated

with target gene regulation, we assigned all enhancers to the

most proximate gene, judged by enhancer-TSS distance,

because the proximity of regulatory elements is a major determi-

nant of selectivity (Splinter and de Laat, 2011) and is commonly
Cell Re
used (e.g., Creyghton et al., 2010; Lovén et al., 2013). Using this

assumption, we will miss a proportion of bona fide enhancer-

gene interactions. In addition, we will score false-positive

enhancer-gene pairs. The most responsive FOXO3-bound en-

hancers, as judged by increased activity marks, are associated

with the most prominent changes in gene transcription (calcu-

lated through changes in RNAPII occupancy at the gene body)

(Figures 2A and S2A). These associations exist up to 200 kb

enhancer-TSS maximum distances but are more evident within

smaller distances (Figure 2B), probably due to more accurate

enhancer-gene pairing. These results show that even though
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FOXO3 binds thousands of enhancers, only the subset of FOXO3

binding events with a concomitant increase in enhancer activity

marks—the subset of responsive enhancers—is relevant to

target gene regulation.

Changes in enhancer activity marks can be expressed in rela-

tive and absolute values. We reasoned that the most informative

groups of enhancers to distinguish between the effect of relative

and absolute changes are enhancers with low relative and high

absolute changes and vice versa. Interestingly, enhancers with

high absolute but low relative changes are more associated

with gene activation than enhancers with high relative but low

absolute changes. In addition, the subset of enhancers with

the highest absolute change also associate the most with

changes in gene activation, irrespective of the relative amount

of change. We observe this phenomenon for any combination

of enhancer activity marks (H3K27ac or RNAPII changes) with

measures for gene transcription and expression (RNAPII occu-

pancy and RNA-seq) (Figures 2C and S2B–S2D; data not

shown). In an alternative approach, we assigned the closest

FOXO3-bound enhancer to all genes (not just the closest one),

with several windows up to 200 kb. The mere presence or

absence of a FOXO3-bound enhancer poorly associates with

changes in gene transcription, but the association increases

greatly when changes in enhancer activity marks are taken into

account (Figure S2E). In addition, we could confirm that absolute

changes are best associated with gene activation (Figures S2F

and S2G). Possibly, the observed changes in enhancer activity

marks represent the delivery of activating factors to target

gene promoters. Absolute numbers might be most relevant in

this context, as they represent the actual amount of activating

factors.

FOXO3 Output Is Determined by the Amount of Bound
FOXO3
To investigate what features distinguish FOXO3-induced

from nonresponding bound enhancers, we visually inspected

FOXO3-bound enhancers and noticed that highly responsive en-

hancers contain more prominent FOXO3 peaks. To test if local

FOXO3 levels are associated with the outcome of FOXO3 activa-

tion, we determined FOXO3 ChIP-seq signal on all bound en-

hancers. Indeed, the amount of FOXO3 binding progressively

increases with increased enhancer induction (Figures 3A and

S3A). Endogenous FOXO3 levels show a similar progressive

increase (Figure S3B). The amount of FOXO3 binding also

positively correlates with changes in activity marks without using

arbitrary thresholds (Figures 3B, S3C, and S3D). As supported

by inspection of individual tracks and genome-wide analysis,

unchanged FOXO3-bound enhancers do show a local high

H3K4me1 signal (Figure S3E) and a clear FOXO3 signal in two in-

dependent FOXO3-ER and endogenous FOXO3 profiles (Figures

3A and S3F), thus excluding the presence of a significant number

of false positives in FOXO3 binding status or enhancer identifica-

tion that would account for the lack of response. Because an in-

duction in enhancer activity marks is associated with target gene

regulation, we categorized FOXO3-bound enhancers according

to increasing FOXO3 levels. The most highly bound enhancers

were also associated with the most changes in adjacent gene

transcription (Figure 3C). Several examples of FOXO3 respon-
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sive enhancers near known target genes are shown (Figures

3D and S3G). The paradigm that more bound FOXO3 results in

more target gene regulation also extends to the total amount

of bound FOXO3 in the vicinity of a gene (Figure S3H). Although

peak size may reflect a combination of properties, including

affinity and residence time, these results show that the amount

of bound FOXO3 determines the local output of FOXO3 activity

at enhancers and FOXO3 target gene regulation.

FOXO3 Binding Is Determined by Sequence Content and
Chromatin Context
Because the amount of FOXO3 DNA binding is relevant for

enhancer and target gene activation, we sought to investigate

what parameters determine FOXO3 binding. The presence of

multiple Forkhead motifs within one enhancer could result in

more FOXO3 binding, providing a simple explanation for the dif-

ferences in FOXO3 binding levels. To test this hypothesis, we

determined the frequency of previously identified Forkhead

motifs enriched within FOXO3 peaks (Eijkelenboom et al.,

2013) and noticed an increasing frequency of Forkhead motif

presence corresponds with greater changes in activity marks

(Figures 3E and S3I), suggesting sequence content directs the

outcome of FOXO3 activation. However, Forkhead motif pres-

ence is not the single parameter determining FOXO3 binding,

becausemere classification of enhancers by the amount of Fork-

head motifs does not correlate with differences in FOXO3 bind-

ing (Figure S3J; compare with Figures 3A and S3A). Previously,

we have observed that FOXO3-bound intergenic regions are

marked by RNAPII peaks prior to FOXO3 induction (Eijkelen-

boom et al., 2013), suggesting that the preexisting chromatin

context influences motif accessibility and subsequent binding.

To verify this suggestion, we show that FOXO3 preferentially

binds the most open and active enhancers based on FAIRE,

H3K27ac values (Figures 4A and 4B), and RNAPII occupancy

(Figure S4A) prior to FOXO3 activation. Endogenous FOXO3

and an independent FOXO3-ER ChIP-seq confirm this prefer-

ence (Figure S4B). The chromatin state not only determines

whether FOXO3 is bound but also influences the binding inten-

sity, as the amount of FOXO3 binding shows a gradual and

continuous increase with increasing initial enhancer activity

marks and accessibility (Figures 4C and S4C). Similar results

were obtained for endogenous FOXO3 binding (Figures S4D–

S4F). Initial levels of enhancer activity marks are independent

of Forkhead motif presence (Figure S4G) and, when corrected

for motif presence, FOXO3 preferentially binds the subset of

Forkhead motifs contained in enhancers with the highest activity

marks and accessibility (Figure 4D). The combination of both

parameters confirms FOXO3 DNA binding affinity is determined

by both motif presence and accessibility (Figures 4E and S4H).

We could confirm this preference in other genome-wide binding

profiles for FOXO3 (breast cancer cells; Ruben van Boxtel and

Paul Coffer, personal communication) and FoxO1 (mouse liver

and T cells; Ouyang et al., 2012; Shin et al., 2012) (Figure S4I).

Although both FOXO family members preferentially bind the

Forkhead motif, these data also suggest that DNA binding by

FOXOs is promiscuous, meaning FOXOs are also able to bind

less specific sequences. This is in line with previous observa-

tions regarding the identification of Forkhead motifs in only
hors
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Figure 3. FOXO3 Output Is Determined by FOXO3 Binding

Levels

(A) FOXO3 ChIP-seq signal at all FOXO3 bound enhancers, cor-

rected for background levels. Boxplots with 5%–95% whiskers

show FOXO3 levels on enhancers categorized by changes in

H3K27ac (p values from a two-tailed Mann-Whitney U test relative

to unchanged; ****p < 10�15). Average FOXO3 ChIP-seq signals

at FOXO3 bound enhancers for same categories are shown.

Enhancers are centered on the FOXO3 peak center.

(B) Responsive FOXO3 bound enhancers were identified by abso-

lute changes in H3K27ac (>1) and sorted in 20 equal sized bins for

H3K27ac changes (left) or FOXO3 occupancy (right). Mean and

95% confidence intervals of FOXO3 levels (left) and H3K27ac

absolute changes (right) are shown.

(C) FOXO3 bound enhancers were categorized in four equal-sized

groups with increasing FOXO3 levels and changes in RNAPII

occupancy of the proximate gene were calculated. Boxplot with

5%–95%whiskers are shown for all enhancers (%200 kb enhancer-

TSS; p values from a two-tailed Mann-Whitney U test, relative to

lowest; ns = p > 0.05, **p < 10�4).

(D) Example tracks of FOXO3, H3K4me1, H3K27ac, and RNAPII

ChIP-seq occupancy in untreated (�) or FOXO3 activated (+) con-

ditions. Four enhancers (gray boxes) are shown. Proximate genes

with enhancer-TSS distance are indicated below tracks.

(E) The frequency of Forkhead motif occurrence as identified in

FOXO3-bound regions (Eijkelenboom et al., 2013) was determined

for all FOXO3-bound and FOXO3-unbound enhancers, and bound

enhancers were categorized by absolute changes in H3K27ac.

See also Figure S3.
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Figure 4. FOXO3 Preferentially Binds

Accessible Enhancers with an Active Chro-

matin Profile

(A) FOXO3-bound intergenic enhancers were

categorized in four equal-sized groups with

increasing FOXO3 levels. Average signals at

FOXO3-bound enhancers of H3K27ac and RNAPII

ChIP-seq profiles for the same categories are

shown before and after FOXO3 activation (4 hr

4OHT).

(B) Enhancers were sorted in 20 equal-sized bins

according to increasing initial H3K27ac (top) or

FAIRE (bottom) signals and FOXO3 binding status

was determined. The number of FOXO3-bound

enhancers within each bin is shown. Boxplots with

5%–95% whiskers show corresponding levels of

activity marks (p values from a two-tailed Mann-

Whitney U test).

(C) FOXO3 levels were determined on all en-

hancers (regardless of FOXO3 binding status) and

corrected for background. Enhancers were sorted

in 20 equal bins for increasing initial H3K27ac (top)

or FAIRE (bottom) signals. Mean and 95% confi-

dence intervals of FOXO3 levels are shown for

each bin.

(D) Enhancers with one canonical Forkhead motif

were selected and FOXO3 binding within this

subset was determined. Sorted H3K27ac values

are shown, with black lines indicating FOXO3

binding. Boxplots with 5%–95% whiskers show

corresponding H3K27ac levels (p value from a

two-tailed Mann-Whitney U test).

(E) Enhancers were divided in four equal groups for

increasing initial H3K27ac and FAIRE levels and

categorized by the number of canonical Forkhead

motifs. Mean and 95% confidence intervals of

FOXO3 levels are shown for each category.

(F) Distribution of FOXO3 levels on all enhancers.

See also Figure S4.
45% percent of FOXO3-bound regions (Eijkelenboom et al.,

2013). In addition, the distribution of FOXO3 binding shows a

continuous rather than a binary profile (Figures 4F and S4J). A

binary profile is expected when enhancers display either back-

ground or specific binding, dictated by, for example, motif pres-

ence. The continuous distribution is more consistent with a

gradual increase in binding affinity and is analogous to distribu-

tions of promoter-bound c-Myc, for which binding was shown to

mirror promoter activity (Lin et al., 2012; Nie et al., 2012).

Although promoter binding is much less frequent than enhancer

binding (8.8% and 65% of all peaks, respectively), FOXO3 does

bind promoter regions (877 peaks are within 2.5 kb from anno-

tated gene TSSs). As expected, FOXO3 promoter binding is

similar to enhancer binding, with a preference for active pro-
1670 Cell Reports 5, 1664–1678, December 26, 2013 ª2013 The Authors
moters judged by initial H3K27ac values

(Figure S4K) and a concomitant increase

in these H3K27ac levels (Figure S4L).

These results argue against FOXO3

generally operating as a pioneer factor,

which has been suggested by in vitro

studies for Foxo1 (Hatta and Cirillo,
2007; Hatta et al., 2009), but actually support the opposite:

upon activation, FOXO3 occupies a preexisting network of en-

hancers displaying high activity marks and FOXO3 binding levels

mirror initial levels of these marks and preexisting accessibility.

Pre-existing Levels of Enhancer Activity Marks Direct
the FOXO3 Transcriptional Response
As the output of FOXO3 enhancer binding depends on FOXO3

levels and FOXO3 preferentially binds to enhancers with the

highest level of activity marks, this suggests FOXO3 will induce

highly active enhancers the most. To test this hypothesis,

FOXO3-boundenhancerswerecategorizedbyabsolute changes

in H3K27ac. We focused on absolute changes, because we

already showed that these are more relevant to target gene



regulation than relative changes (Figure 2). Enhancers with the

highest absolute change in enhancer activity marks initially also

display the highest level of these marks (Figures 5A and 5B).

We could confirm this with independent H3K27ac and RNAPII

ChIP-seq experiments and upon endogenous FOXO3 activation

(Figure S5A) and exclude the influence of arbitrary cutoffs (Fig-

ures 5C and S5B). Inspection of individual tracks supports

FOXO3-induced amplification of activity marks; Figure 5D shows

an example of a genomic locus containing multiple enhancers

with variable initial levels and concomitant FOXO3-induced

changes.

Initially, we sought to determine what features distinguish

responsive from nonresponsive enhancers and influence

FOXO3-mediated target gene regulation. We showed that the

combination of Forkhead motif presence and high levels of

enhancer activity marks predicts FOXO3 binding levels. To

determine if these parameters also predict the outcome of

FOXO3 activation, we combined the two parameters on all

enhancers bound by FOXO3. Bound enhancers with multiple

Forkhead motifs and high initial activity marks are most likely

to be induced with associated activation of adjacent genes (Fig-

ures 5E, 5F, and S5C). Within the subset of induced FOXO3-

bound enhancers, the enhancers with the highest initial activity

marks are most associated with target gene induction (Figures

5G and S5D–S5F). Also irrespective of FOXO3 binding status,

genes associated with enhancers with multiple Forkhead motifs

and the highest initial activity marks are most prone to induction

by FOXO3 (Figure S5G). Together, these results are in agreement

with the concept that FOXO3 target gene regulation is dictated

by quantitative features of the preexisting chromatin profile.

H3K27ac levels at enhancers are correlated with higher gene

expression levels of adjacent genes (Creyghton et al., 2010).

Given this initial high levels are associated with FOXO3 binding

and response, we questioned if FOXO3-regulated genes adja-

cent to these enhancers are also initially more highly expressed.

As judged by RNAPII occupancy and expression data fromRNA-

seq, genes with nearby FOXO3-bound enhancers are enriched

for expressed genes (Figure S5H). Although the most responsive

enhancers initially show the highest levels of activity marks, the

expression level of the associated genes is only marginally

higher before FOXO3 activation (Figures S5I and S5J). This sug-

gests that if actual transcriptional activity of a gene is the sum of

all regulatory impulses active within the cell, then the preexisting

level of activity marks of an individual enhancer might be less

correlated with ongoing transcription and more relevant for tran-

scriptional changes.

FOXO3 Activation Potentiates Production of
Enhancer RNAs
RNAPII enhancer occupancy was recently shown to produce

transcripts termed enhancer RNAs (eRNAs), for which the pres-

ence correlates with the mRNA levels of adjacent protein-coding

genes. In addition, target gene induction was shown to be

reduced upon eRNA depletion, suggestion a requirement for

these transcripts in gene regulation (reviewed in Pennacchio

et al., 2013). To determine if FOXO3-responsive enhancers

also produce eRNAs, we performed RNA-seq on total RNA

depleted for ribosomal RNA (Ribominus, or rRNA�) and
Cell Re
poly(A)-enriched [poly(A)+] RNA. We calculated changes in

RNA-seq reads at all intergenic enhancers. Responsive en-

hancers show increased levels of transcription (Figures 6A,

S6A, and S6B). Enhancer transcription provides a third readout

for enhancer activity and confirms the results obtained for

H3K27ac and RNAPII. First, the highest FOXO3-bound en-

hancers show the most prominent increase in eRNA transcrip-

tion (Figures 6B and S6C). Second, FOXO3 preferentially binds

to more transcribed (and thus active) enhancers preceding

FOXO3 activation (Figures 6C and S6D). Third, FOXO3-induced

eRNA transcription associates with nearby gene activation (Fig-

ures 6D, S6E, and S6F). In addition, we determined the presence

of, and changes in, transcription of intergenic enhancers catego-

rized by increasing initial H3K27ac levels and Forkhead motif

presence (Figures 6E and S6G). This also shows that the propor-

tion of responsive enhancers is highest in the subset of

enhancers with multiple Forkhead motifs and the highest initial

activity marks. For a proportion of bound enhancers, no tran-

scription is detected. This proportion decreases both with higher

initial H3K27ac levels and upon FOXO3 activation (indicated in

the pie charts in Figures 6E and S6G). Similar results were ob-

tained using categorization by RNAPII levels (not shown). There-

fore, eRNA production serves an alternative transcriptional

readout for the local response at bound enhancers, underlining

the role of the preexisting chromatin state in directing the

FOXO3 transcriptional program.

Compared with RNAPII ChIP-seq, strand-specific RNA-seq

can provide additional information on the transcription of en-

hancers. Figure 6F shows two examples of FOXO3-bound and

FOXO3-transcribed enhancers near regulated target genes,

which are also bound and regulated by endogenous FOXO3 acti-

vated through PKB inhibition (Figure S6H). Transcription of

enhancers was described to be either nonpolyadenylated or

polyadenylated (Pennacchio et al., 2013). In these two examples,

transcription is evident both from rRNA� and poly(A)+ RNA-seq.

Generally, poly(A)+ RNA sequencing yields similar results as

rRNA� sequencing, suggesting at least some proportion of

enhancer transcripts are polyadenylated. Transcription of the

two examples is clearly unidirectional, while generally transcrip-

tion from FOXO3-responsive enhancers becomes more unidi-

rectional upon FOXO3 activation (Figure S6I). This suggests

that eRNAs required for gene activation are produced from a

specific DNA strand and indicates that functional transcription

from enhancers is unidirectional.

Possible Disruption of FOXO3 Activity through Genetic
Alterations in Enhancers
The PI3K/PKB axis is frequently mutated in a wide variety of can-

cer types. Specifically, loss-of-function mutations in PTEN and

activating mutations in PI3K subunits and (less frequently) PKB

have been identified, resulting in increased signaling (Hennessy

et al., 2005). FOXOs make an important contribution to the

transcriptional output of PI3K/PKB signaling and the above

mutations generally result in inactivation of FOXOs through

constitutive cytoplasmic retention, as occurs in the DLD1 cells

used in this study (Samuels et al., 2005). Alteration of regulatory

regions bound by FOXO could provide an alternative mechanism

to disrupt FOXO tumor suppressive function. Mutations in the
ports 5, 1664–1678, December 26, 2013 ª2013 The Authors 1671
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Figure 5. FOXO3 Transcriptional Output Is Predetermined by Initial Levels of Enhancer Activity Marks

(A and B) Average signals at FOXO3 bound enhancers of H3K27ac (A) and RNAPII (B, intergenic only) ChIP-seq profiles prior to and after FOXO3 activation

(4 hr 4OHT) categorized by absolute changes in H3K27ac. Enhancers are centered on the FOXO3 peak.

(C) Responsive FOXO3-bound enhancers were identified by changes in H3K27ac (>0.5 relative change, log2) and sorted in ten equal-sized bins for initial

H3K27ac levels. Mean and 95%confidence intervals of H3K27ac levels before and after FOXO3 activation are shown for each bin (top), with absolute and relative

changes in H3K27ac levels (below).

(legend continued on next page)
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Forkhead motif could disable FOXO binding but are unlikely to

occur frequently. Our results, however, suggest that alterations

in enhancer activity could also greatly influence FOXO3 DNA

binding and subsequently affect the transcriptional program.

One potential factor influencing enhancer activity is genetic vari-

ation (Pennacchio et al., 2013). We determined FOXO3 binding

levels on enhancers containing variants associated with colo-

rectal cancer (CRC) (Akhtar-Zaidi et al., 2012). Besides the over-

lap between CRC SNPs and regulatory elements in DLD1 cells,

which is much larger than expected from randomly selected

SNPs (Figure 7A), we also observed relatively high FOXO3 levels

on these enhancers (Figure 7B). In contrast, FOXO3 levels on

enhancers with variants associated with inflammatory bowel

disease (Jostins et al., 2012) display normal occupancy values

relative to all enhancers. Although the numbers of genetic vari-

ants are small and it is unclear if they represent differences in

enhancer activity, these results indicate that in addition to the

mutations found in components of the PI3K signaling pathway,

a functional relationship between alterations in enhancer activity

and FOXO3 function might also be biologically relevant in the

context of cancer (a model is depicted in Figure S7).

DISCUSSION

This study establishes the role for chromatin context in the regu-

lation of FOXO3-induced target gene regulation. Whereas we

previously noted FOXO3 binding to distal regions and initial anal-

ysis suggested enhancer binding and FOXO3-induced changes

in enhancer activity marks, we now provide a genome-wide

and systematic analysis while showing the underlying mecha-

nistic insights and consequences of this phenomenon. We

have made use of the H3K4me1 signal to identify enhancers

independently of three activity marks (RNAPII, H3K27ac, and

eRNAs), which we subsequently related to both changes of

these enhancer activity marks at FOXO3-bound enhancers and

FOXO3-induced changes in adjacent gene expression. First,

our integrative genomic approach shows that FOXO3 enhancer

binding is in part determined by the presence of one or multiple

canonical Forkhead motifs within an enhancer. Clustered bind-

ing sites of the same transcription factor are not uncommon

but rather enriched in human regulatory regions (Gotea et al.,

2010) and might provide a common mechanism to obtain high

local transcription factor concentrations. Second, we observed

targeting of FOXO3 specifically to a subset of binding elements

within regions of open chromatin that exhibit high levels of activ-

ity marks. This has been observed for other transcription factors,
(D) Profiles of FOXO3, H3K4me1, H3K4me3, H3K27ac, and RNAPII ChIP-seq

gene locus. Identified enhancers (boxes, gray = FOXO3 bound, white = unbound

(bars, � and +) and absolute changes (numbers above bars).

(E) All intergenic FOXO3-bound enhancers were sorted into four groups with in

Forkhead motifs. Absolute changes in RNAPII occupancy are shown (numbers of

tailed Mann-Whitney U test on all categories relative to ‘‘x’’).

(F) Enhancers were categorized as in (E), but for all FOXO3-bound enhancers. C

group (%200 kb enhancer-TSS).

(G) FOXO3 bound responsive enhancers (H3K27ac > 0.5 relative induction, log2

levels and RNAPII occupancy changes of the adjacent gene were calculated (

occupancy (p values from a two-tailed Mann-Whitney U test, relative to lowest;

See also Figure S5.

Cell Re
including HSF, glucocorticoid receptor, and FOXP3 (Guertin and

Lis, 2010; John et al., 2011; Samstein et al., 2012). The chromatin

landscape can be directive in transcription factor binding, as we

show for FOXO3 binding, and can actually be used to predict

transcription factor binding amplitudes (Guertin et al., 2012;

Pique-Regi et al., 2011). Although these studies indicate the

importance of chromatin context in directing transcription factor

binding, they did not relate chromatin context with the output of

transcription factor activity. Here, we relate the quantitative fea-

tures of preexisting chromatin state to the consequences of

FOXO3 induction. The genome-wide analysis of enhancer-asso-

ciated activity marks and gene expression both before and after

FOXO3 activation allows a systematic analysis to further under-

stand the interplay between the preexisting chromatin state and

the consequences of transcription factor activation. We show

that the H3K27ac and RNAPII enhancer occupancy levels that

are predictive for FOXO3 binding also increase upon FOXO3

activation. The relevance of this amplification for target gene

regulation is highlighted by the greater significance of absolute

changes in enhancer activity marks, compared to relative

changes, in transcriptional activation of associated genes. In

line with this, bound regulatory regions with the highest preexist-

ing activity marks are most associated with gene activation. We

not only show the importance of the preexisting chromatin state

for directing FOXO3 DNA-binding but also provide evidence for

its importance in target gene regulation. Our results indicate

that the FOXO3 transcriptional response is both dictated by,

and limited to, the cell’s specific epigenetic program that is

active at the moment of FOXO3 induction. This is in line with ob-

servations on short-term transcriptional changes upon signaling

cues, which are generally limited to genes with active (or poised)

enhancers (Ghisletti et al., 2010; Heintzman et al., 2009). Taken

together, and from a mechanist point of view, our data strongly

suggest that the number of FOXO3 binding events, determined

by a combination of Forkhead DNA elements and the chromatin

context, sets a threshold for productive FOXO3 target gene

regulation.

The FOXO Transcriptional Program
The notion that FOXO function connects lifespan with two major

age-related diseases, i.e., cancer and diabetes, has resulted in

an intense search for FOXO-regulated genes. The underlying

premise is that a FOXO-specific gene program drives optimal

lifespan with a concomitant reduction in disease onset. To

date, numerous studies have reported FOXO-induced gene

expression changes in various organisms and cellular settings.
occupancy in untreated (�) or FOXO3 activated (+) conditions at the KLF6

) are indicated above, with H3K27ac values before and after FOXO3 activation

creasing initial H3K27ac levels and categorized by the number of canonical

enhancers within each category are indicated below with p values from a two-

hanges in RNAPII occupancy of the proximate gene were calculated for each

) were categorized in four equally sized groups with increasing initial H3K27ac

%200 kb enhancer-TSS). Boxplots and bars show changes in RNAPII gene

ns = p > 0.05, *p < 0.05, **p < 10�7).
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Figure 6. FOXO3 Potentiates Transcription of Enhancers

(A) RNA-seq signal (rRNA depleted) at all intergenic FOXO3-bound enhancers categorized by absolute changes in H3K27ac.

(B) Same as (A), but categorized by FOXO3 levels.

(C) FOXO3 binding status was determined for all intergenic enhancers and corresponding levels of initial transcription determined by RNA-seq are shown.

(D) FOXO3 bound intergenic enhancers were categorized by changes in RNA levels (up is > 1 change, log2) and the changes in RNAPII occupancy of the

proximate gene were calculated. Boxplot are shown for all enhancers with a maximum enhancer-TSS distance of 200kb.

(legend continued on next page)
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B

Figure 7. Genetic Variations Could Be Relevant for FOXO3 Binding

(A) The overlap between sequence variants associated with increased colo-

rectal cancer risk and enhancers identified in this study compared to random

variants (gray bars and boxplot).

(B) Enhancers were ranked for increasing FOXO3 levels and enhancers over-

lapping with risk variants for colorectal cancer (CRC) and inflammatory bowel

disease (IBD) are indicated by black lines. FOXO3 levels on CRC or IBD vari-

ants containing enhancers relative to all enhancers are indicated to the right,

with mean and SEM for all categories. The distribution of FOXO3 levels on all

enhancers is indicated with a boxplot with 5–95 percentile values. p values are

from a two-tailed Mann-Whitney U test.

See also Figure S7.
Comparison of these results has not yet resulted in the definition

of a comprehensive set of genes that may indeed represent a

‘‘FOXO signature’’ that can mediate a healthy trade-off between

lifespan and disease. On the contrary, extensive comparison has

yet to result in a single conserved gene regulated by FOXO

throughout all organisms and/or cell lines. Thus, the question

arises whether a FOXO signature actually exists. Possibly, simi-

larities can only be found when extending the analysis to biolog-

ical processes regulated by FOXOs, instead of focusing on single

genes (Linda Partridge and Irene Papatheodorou, personal

communication). Considering the flexible and cell-type-specific

nature of regulatory regions and their activity (Heintzman et al.,

2009), our observations provide a mechanistic explanation for

the diversity in FOXO transcriptional output and lack of a clear

FOXO signature. Recently, mainly through studies in model

organisms, it has become evident that the biological role of
(A–D) p values are from a two-tailedMann-WhitneyU test relative to the first categ

with 5%–95% whiskers.

(E) Same as Figure 5E, but with the presence of and changes in enhancer transcri

well as FOXO3-induced changes (D). Only pie charts for enhancers with multipl

enhancers within each category in table).

(F) Tracks of FOXO3, H3K4me1, H3K27ac, RNAPII, RNA poly(A)+, and rRNA� in

the left panel are displayed in the right panels in more detail. See also Figure S6
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FOXO transcription factors primarily involves the response to

stress conditions. In this context, others and we have argued

that FOXOs mainly function to maintain cellular and organismal

homeostasis over time (Eijkelenboom and Burgering, 2013; Salih

and Brunet, 2008). Our results provide an elegant rationale on

how homeostasis can be achieved. The use of a preexisting

gene program directed by chromatin context of regulatory re-

gions (as illustrated in Figure S7) could allow for a rapid and tem-

porary adjustment in gene transcription, sufficient to re-establish

homeostasis, while preventing elaborate time- and energy-

consuming permanent alterations in the cell’s specific gene

expression program.

In many respects, FOXO and c-Myc are functional antago-

nists, and FOXOs can actively repress c-Myc function in several

ways (reviewed in Peck et al., 2013). This is in agreement with

c-Myc being an oncogene and FOXOs being bona fide tumor

suppressors. However, the aforementioned lack of a FOXO

gene expression signature is highly reminiscent of what has

been observed for c-Myc (Lin et al., 2012; Nie et al., 2012).

The major distinction between FOXO3- and c-Myc-mediated

gene regulation is that FOXO3 appears to select regulatory

regions, guided by sequence content and cellular chromatin

architecture, to restrict gene expression to a limited set of

genes that are already controlled by active enhancers, whereas

c-Myc acts as a global amplifier of transcription of a large

number of active genes. Whether these distinctions between

FOXO and c-Myc regarding transcription control contribute

to their opposing role with respect to cancer remains to be

investigated.

FOXOs as Pioneer Factors?
FOXA, like FOXO, is a member of the larger Forkhead family and

has been shown to act as a pioneer factor in establishing chro-

matin opening at regulatory regions to enable subsequent

recruitment of transcription regulators (reviewed in Lalmansingh

et al., 2012). In vitro studies have shown mouse Foxo1 binding

to disrupt histone-DNA contacts, resulting in chromatin opening

(Hatta and Cirillo, 2007; Hatta et al., 2009). Also, binding of

the chromatin-remodeling complex Swi/Snf to DAF-16/FOXO

bound C. elegans genomic locations has been taken to suggest

that FOXO may act as a pioneer factor (Riedel et al., 2013). Our

results are not compatible with FOXO3 generally acting as a

pioneer factor, but they also do not exclude that this occurs in

a small subset of bound locations, which could imply a dual

role as both a classic transcriptional activator and a pioneer fac-

tor (as suggested by Lalmansingh et al., 2012). In line with this, it

has been proposed that the mechanism and function of DNA

binding of pioneer factors within the chromatin landscape is

not substantially different from nonpioneer transcription factors,

with preferential binding of both categories to regions marked
ory (ns = p > 0.05, *p < 0.05, **p < 10�3, ***p < 10�10, ****p < 10�15). Boxplots are

ption. Pie charts show RNA levels prior to (�) and after FOXO3 activation (+) as

e canonical Forkhead motifs are shown (all 12 categories in S6G, numbers of

untreated (�) or FOXO3-activated (+) conditions. Transcribed enhancers from

.
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by active histone marks. Thus, many transcription factors might

actually have the potential to function as a pioneer in a subset

of regions (Guertin and Lis, 2013). The timing of FOXO activation

is possibly relevant in this context, as we focus on short-term

effects of FOXO3 activation and the transcriptional conse-

quences of the actions of a pioneer factor might be more

evident upon prolonged activation. However, FOXO3-induced

changes in RNAPII occupancy upon short (4 hr) and long

(24 hr) activation are similar (Eijkelenboom et al., 2013), arguing

against this. Measurements on nuclear mobility provide an

alternative method to distinguish pioneers from nonpioneers.

Nuclear mobility of pioneers FoxA1 and FoxA2 was much lower

compared with other transcription factors, indicative of tight

chromatin binding (Sekiya et al., 2009). Similar measurements

of FOXO4 show high nuclear mobility (Tobias Dansen, personal

communication), also arguing against a general function as

pioneer factors.

Relevance of Genetic Variation for FOXO Function
The role of epigenetics in aging and disease has recently

attracted great interest. Epigenetic changes caused by environ-

mental changes or genetic variation within regulatory regions are

thought to be involved in the pathogenesis of, and predisposition

to, aging and disease (Oberdoerffer and Sinclair, 2007; Rando

and Chang, 2012; Sakabe et al., 2012). Several studies, espe-

cially in the aging field, have searched for genetic variation within

the FOXO genes to link genetic variation to human lifespan (Ken-

yon, 2010). Our results suggest a conceptual mechanism,

indicating that genetic variation that affects levels of enhancer

activity, but without affecting the Forkhead motif sequence,

could also influence FOXO3 DNA binding and subsequently

affect the FOXO3-mediated regulation of target genes. This indi-

cates that genetic variation, especially in enhancer regions near

FOXO target genes, may prove to be a relevant determinant to

modulate FOXO function and transcriptional output. In agree-

ment with this, we observe a specific correlation between

FOXO binding and enhancers with CRC-associated genetic var-

iants. This possibility is further underscored by recent reports

showing that quantitative changes in histone marks and RNAPII

levels at regulatory regions are associated with genetic variation

(Kasowski et al., 2013; Kilpinen et al., 2013; McVicker et al.,

2013). As shown here for FOXO3, these quantitative changes

could affect DNA binding and transcriptional output of other tran-

scription factors as well, without affecting their recognition

sequence, providing an additional explanation for the functional

consequences of these quantitative effects.

Deregulation of PI3K/PKB signaling is one of the most

frequent events in cancer in general, as well as in CRC, and

FOXOs are themselves regulated by PI3K/PKB signaling. Our

findings therefore add another possible mode of deregulation

of this pathway: genetic disruption of regulatory regions

required for FOXO-mediated gene regulation. Analogously, it

will be of interest to analyze if a similar correlation may exist

between FOXO-bound enhancers in relevant tissues and ge-

netic variants associated with other diseases involving FOXO

deregulation, such as diabetes, or even human lifespan. Clearly,

further understanding the influence of chromatin state on direct-

ing and possibly disrupting the FOXO transcriptional program
1676 Cell Reports 5, 1664–1678, December 26, 2013 ª2013 The Aut
might prove necessary to fully understand FOXO function in

aging and disease.

EXPERIMENTAL PROCEDURES

ChIP-Seq

Cells were grown in the absence or 4 hr presence of 4OHT or PKB in-

hibitor. ChIPs were performed as described in detail elsewhere (Eijkelenboom

et al., 2013). Immunoprecipitations were performed with antibodies recog-

nizing H3K4me1, H3K4me3, H3K27ac, total H3 (ab8895, ab8580, ab4729,

and ab1791; Abcam) or FOXO3 (H144; Santa Cruz) for the FOXO3-ER (2)

ChIP-seq.

RNA-Seq

Cells were grown in the absence or 8 hr presence of 4OHT. RNA was isolated

from two independent biological replicates, generated in parallel with two out

of three batches of chromatin for ChIP-seq. Sequencing libraries were con-

structed using SOLiD Total RNA-Seq Kit (Life Technologies) according to

the standard protocol recommendations for low input.

FAIRE-Seq

The FAIRE sample was generated from 10 3 106 DLD1-F3 cells as described

in detail previously (Simon et al., 2012). Sequencing library preparation,

sequencing, and mapping were performed on isolated DNA as for the

ChIP-seq.

Data Analysis

FOXO3 Peak Identification

The Cisgenome software package (Ji et al., 2008) was used for the identifica-

tion of binding peaks from the ChIP-seq data and further analysis.

Enhancer Identification

Peaks were identified in H3K4me1 (untreated and +4 hr 4OHT) and H3K4me3

(untreated and +4 hr 4OHT) data sets, and H3 was used as background con-

trol. Enhancers consist of all identified H3K4me1 peaks excluding peaks over-

lapping with H3K4me3 peaks.

Quantification of Gene Expression

To set gene expression fromRNAPII ChIP-seq (untreated and +4 hr 4OHT) and

RNA[poly(A)]-seq (untreated and +8 hr 4OHT, performed in duplicate) data, we

counted the number of the sequencing tags aligned to annotated transcript

coordinates (Mokry et al., 2012).

Motif Presence

Motif frequencywas determined within the 2 kb surrounding the enhancer cen-

ters on the subsets of enhancers described in the text. Motif mapping was per-

formed using Cisgenome v2.0 utilities (threshold: �r 500).

SNP Overlap

To determine overlap with variants associated with colorectal cancer and in-

flammatory bowel disease, a SNP falling within enhancer coordinates was

considered as an overlapping SNP. Random SNP sets were generated from

variants present on Human Omni1S genotyping chip (Illumina).

Statistical Analysis

Analysis were performed in R, Excel, or Graph Pad. The details of tests used

are given in figure captions.

Extended experimental procedures can be found in the Supplemental

Information.

ACCESSION NUMBERS

ChIP-seq, RNA-seq, and FAIRE-seq raw data are available from the Gene

Expression Omnibus with accession number GSE50243. An overview of all

data sets used in this study can be found in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2013.11.031.
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