479 research outputs found
Dye-sensitized photooxygenation of sugar furans: novel bis-epoxide and spirocyclic C-nucleosides.
Dye-sensitized photooxygenation of 2-methyl 5-(2,3,5-tri-O-acetyl-b-D-ribofuranosyl)furoate leads to (1S,4R)-endo-peroxide, highlighting a high facial diastereoselectivity. This endo-peroxide rearranges into syn-(1R,2R:3S,4R)-diepoxide C-nucleoside, while by Et2S-reduction followed by NEt3 catalysis affords a spirocyclic C-nucleoside
Chlamydophila pecorum in fetuses of mediterranean buffalo (bubalus bubalis) bred in Italy
In order to study the role played by the different species of Chlamydophila in causing abortions in Mediterranean buffalo, the Authors examined 164 fetuses from 80 different buffalo herds in Southern Italy. Three fetuses, came from two different herds, were positive. Our study confirms the pathogenic role of C. pecorum in buffalo, not only as a cause of neuropathology in calves but as an infectious abortive agent
High-efficiency mixing of fine powders via sound assisted fluidized bed for metal foam production by an innovative cold gas dynamic spray deposition method
Metal foams are an interesting class of materials with very low specific weight and unusual physical, mechanical and acoustic properties due to the porous structure (1). These materials are currently manufactured by means of several conventional processes (2), limited by the impossibility to produce foams with complex geometry. This paper deals with the study of an innovative method to produce complex shaped precursors for aluminum foams through cold gas dynamic spray deposition process (CGDS), aluminum alloy (AlSi12) and titanium-hydride (TiH2) being the metal and the blowing agent, respectively. However, the success of this approach strongly depends on the achievement of a homogenous and deep mixing between AlSi12 and TiH2 fine powders, belonging to group C of Geldart’s classification. Classical mixing methods (such as tumbling mixers, convective mixers, high-shear mixers, etc.) are suitable for large non-cohesive particles (\u3e 30µm) but not for micronic particles (3), agglomerated due to strong interparticle forces. Alternatively, new wet and dry mixing techniques have been proposed for fine particles (4), suffering from different disadvantages: additional steps of filtration/drying are needed for wet methods, whereas, dry methods generally involves the reduction of the granulometry and the damaging or contamination of the original powders. The sound assisted fluidization technology (140dB-80Hz) has been adopted in this work to overcome the technical issues of mixing cohesive powders (5), thus obtaining a mixing to the scale of the primary particles in a simple, economic, not intrusive and not destructive way (the properties and morphology of the original particles were preserved). Therefore, the mixed powders were then sprayed by means of the proposed CGDS process on a stainless steel sheet to obtain the precursor. This was then heated up in a furnace at 600°C for 10 minutes to obtain the foam. In particular, two different types of mixtures with 1 wt% and 2.5 wt% of TiH2 were investigated; moreover, air compressed as well as helium were used as CGDS carrier gas in order to ensure a higher impact velocity and a better compacting of the powders. A very efficient mixing of powders has been achieved as confirmed by SEM/EDS analysis performed on samples taken from the sound assisted fluidized bed (Fig.1a) and by the time-dependence of the mixing degree (Fig.1b). Macrographs of created porous structures (Fig.2) showed that the coupling of sound assisted fluidization and CGDS process under optimal conditions is a promising and effective technique in manufacturing aluminum precursors for metal foams.
Please click Additional Files below to see the full abstract
Laser Marking of Titanium Coating for Aerospace Applications
Abstract In the aerospace industry, in order to ensure the identification and the traceability of the products, high repeatability, non-invasive and durable marking processes are required. Laser marking is one of the most advanced marking technologies. Compared to traditional marking processes, like punches, microdot, scribing or electric discharge pencil etcher, laser marking offers several advantages, such us: non-contact working, high repeatability, high scanning speed, mark width comparable to the laser spot dimension, high flexibility and high automation of the process itself. In order to assure the mark visibility for the component lifetime, an appropriate depth of the mark is required. In this way, a stable behaviour is ensured also when the component operates in aggressive environments (i.e. in presence of oxidation, corrosion and wear phenomena). The mark depth is strongly affected by the laser source kind and by the process parameters, such us average power, pulse frequency and scanning speed. Moreover, an excessive mark penetration could cause stress concentrations and reduce the fatigue life of the component. Consequently, an appropriate selection of the process parameters is required in order to assure visibility and to avoid excessive damage. Cold Spray Deposition (CSD) is a relative new technology that allows to produce surface coatings without significant substrate temperature increasing. In aeronautics fields this technology is useful to coat materials sensible to temperature, such as solution tempered aluminum alloy, with a titanium layer. Aim of the work is to characterize the laser marking process on CSD Ti coating, in order to study the influence of the laser marking process parameters (pulse power and scanning speed), on the groove geometry of the marking. The experimental marking tests were carried out through a 30 W MOPA Q-Switched Yb:YAG fibre laser; under different process conditions. The groove geometry was measured through a HIROX HK9700 optical microscope. The results showed the effectiveness of the laser process to produce high quality marks on the titanium layer. Moreover, a correlation between the process parameters and the mark's geometry was clearly observed
Growth inhibition of an Araucaria angustifolia (Coniferopsida) fungal seed pathogen, Neofusicoccum parvum, by soil streptomycetes
Background: Araucariaceae are important forest trees of the southern hemisphere. Life expectancy of their seedlings can largely be reduced by fungal infections. In this study we have isolated and characterized such a fungus and investigated the potentia
Evolution of an insect immune barrier through horizontal gene transfer mediated by a parasitic wasp.
Genome sequencing data have recently demonstrated that eukaryote evolution has been remarkably influenced by the acquisition of a large number of genes by horizontal gene transfer (HGT) across different kingdoms. However, in depth-studies on the physiological traits conferred by these accidental DNA acquisitions are largely lacking. Here we elucidate the functional role of Sl gasmin, a gene of a symbiotic virus of a parasitic wasp that has been transferred to an ancestor of the moth species Spodoptera littoralis and domesticated. This gene is highly expressed in circulating immune cells (haemocytes) of larval stages, where its transcription is rapidly boosted by injection of microorganisms into the body cavity. RNAi silencing of Sl gasmin generates a phenotype characterized by a precocious suppression of phagocytic activity by haemocytes, which is rescued when these immune cells are incubated in plasma samples of control larvae, containing high levels of the encoded protein. Proteomic analysis demonstrates that the protein Sl gasmin is released by haemocytes into the haemolymph, where it opsonizes the invading bacteria to promote their phagocytosis, both in vitro and in vivo. Our results show that important physiological traits do not necessarily originate from evolution of pre-existing genes, but can be acquired by HGT events, through unique pathways of symbiotic evolution. These findings indicate that insects can paradoxically acquire selective advantages with the help of their natural enemies
- …