300 research outputs found

    Large N Free Energy of 3d N=4 SCFTs and AdS/CFT

    Get PDF
    We provide a non-trivial check of the AdS_4/CFT_3 correspondence recently proposed in arXiv:1106.4253 by verifying the GKPW relation in the large N limit. The CFT free energy is obtained from the previous works (arXiv:1105.2551, arXiv:1105.4390) on the S^3 partition function for 3-dimensional N=4 SCFT T[SU(N)]. This is matched with the computation of the type IIB action on the corresponding gravity background. We unexpectedly find that the leading behavior of the free energy at large N is 1/2 N^2 ln N. We also extend our results to richer theories and argue that 1/2 N^2 ln N is the maximal free energy at large N in this class of gauge theories.Comment: 20 pages, 3 figure

    Conformal Aspects of Spinor-Vector Duality

    Full text link
    We present a detailed study of various aspects of Spinor-Vector duality in Heterotic string compactifications and expose its origin in terms of the internal conformal field theory. In particular, we illustrate the main features of the duality map by using simple toroidal orbifolds preserving N_4 = 1 and N_4 = 2 spacetime supersymmetries in four dimensions. We explain how the duality map arises in this context by turning on special values of the Wilson lines around the compact cycles of the manifold. We argue that in models with N_4 = 2 spacetime supersymmetry, the interpolation between the Spinor-Vector dual vacua can be continuously realized. We trace the origin of the Spinor-Vector duality map to the presence of underlying N = (2, 2) and N = (4, 4) SCFTs, and explicitly show that the induced spectral-flow in the twisted sectors is responsible for the observed duality. The isomorphism between current algebra representations gives rise to a number of chiral character identities, reminiscent of the recently-discovered MSDS symmetry.Comment: 49 page

    Classification of Heterotic Pati-Salam Models

    Full text link
    We extend the classification of free fermionic heterotic-string models to vacua in which the SO(10) GUT symmetry is broken at the string level to the Pati-Salam subgroup. Using our classification method we recently presented the first example of a quasi--realistic heterotic-string vacuum that is free of massless exotic states. Within this method we are able to derive algebraic expressions for the generalised GSO projections for all sectors that appear in the models. This facilitates the programming of the entire spectrum analysis in a computer code. The total number of vacua in the class of models that we classify is 2^{51} ~ 10^{15}. We perform a statistical sampling in this space of models and extract 10^{11} distinct configurations with Pati-Salam gauge group. Our results demonstrate that one in every 10^{6} vacua correspond to a three generation exophobic model with the required Higgs states, needed to induce spontaneous breaking to the Standard Model.Comment: 42 pages. 6 figures. Published version. Added acknowledgement

    Simple holographic duals to boundary CFTs

    Full text link
    By relaxing the regularity conditions imposed in arXiv:1107.1722 on half-BPS solutions to six-dimensional Type~4b supergravity, we enlarge the space of solutions to include two new half-BPS configurations, which we refer to as the \kap\ and the \funnel. We give evidence that the \kap\ and \funnel\ can be interpreted as fully back-reacted brane solutions with respectively AdS2AdS_2 and AdS2×S2AdS_2\times S^2 world volumes. \kap\ and \funnel\ solutions with a single asymptotic AdS3×S3AdS_3 \times S^3 region are constructed analytically. We argue that \kap\ solutions provide simple examples of holographic duals to boundary CFTs in two dimensions and present calculations of their holographic boundary entropy to support the BCFT dual picture.Comment: 37 pages, pdflatex, 5 figure

    Homeostatic maintenance and age-related functional decline in the Drosophila ear

    Get PDF
    Age-related hearing loss (ARHL) is a threat to future human wellbeing. Multiple factors contributing to the terminal auditory decline have been identified; but a unified understanding of ARHL - or the homeostatic maintenance of hearing before its breakdown - is missing. We here present an in-depth analysis of homeostasis and ageing in the antennal ears of the fruit fly Drosophila melanogaster. We show that Drosophila, just like humans, display ARHL. By focusing on the phase of dynamic stability prior to the eventual hearing loss we discovered a set of evolutionarily conserved homeostasis genes. The transcription factors Onecut (closest human orthologues: ONECUT2, ONECUT3), Optix (SIX3, SIX6), Worniu (SNAI2) and Amos (ATOH1, ATOH7, ATOH8, NEUROD1) emerged as key regulators, acting upstream of core components of the fly's molecular machinery for auditory transduction and amplification. Adult-specific manipulation of homeostatic regulators in the fly's auditory neurons accelerated - or protected against - ARHL

    Holographic renormalization and supersymmetry

    Get PDF
    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.Comment: 70 pages; corrected typo

    Chiral primary one-point functions in the D3-D7 defect conformal field theory

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%C.F.K. and D.Y. were supported in part by FNU through grant number 272-08-0329. G.W.S. is supported by NSERC of Canada and by the Villum foundation through their Velux Visiting Professor program

    Exophobic Quasi-Realistic Heterotic String Vacua

    Full text link
    We demonstrate the existence of heterotic-string vacua that are free of massless exotic fields. The need to break the non-Abelian GUT symmetries in k=1 heterotic-string models by Wilson lines, while preserving the GUT embedding of the weak-hypercharge and the GUT prediction sin^2\theta_w(M(GUT))=3/8, necessarily implies that the models contain states with fractional electric charge. Such states are severely restricted by observations, and must be confined or sufficiently massive and diluted. We construct the first quasi-realistic heterotic-string models in which the exotic states do not appear in the massless spectrum, and only exist, as they must, in the massive spectrum. The SO(10) GUT symmetry is broken to the Pati-Salam subgroup. Our PS heterotic-string models contain adequate Higgs representations to break the GUT and electroweak symmetry, as well as colour Higgs triplets that can be used for the missing partner mechanism. By statistically sampling the space of Pati-Salam vacua we demonstrate the abundance of quasi--realistic three generation models that are completely free of massless exotics, rendering it plausible that obtaining realistic Yukawa couplings may be possible in this space of models.Comment: 14 pages. Standard LaTex. 1 figure. 2 tables. Typos correcte

    Investigation of Quasi--Realistic Heterotic String Models with Reduced Higgs Spectrum

    Get PDF
    Quasi--realistic heterotic-string models in the free fermionic formulation typically contain an anomalous U(1), which gives rise to a Fayet-Iliopolous term that breaks supersymmetry at the one--loop level in string perturbation theory. Supersymmetry is restored by imposing F- and D-flatness on the vacuum. In Phys. Rev. D 78 (2008) 046009, we presented a three generation free fermionic standard-like model which did not admit stringent F- and D-flat directions, and argued that the all the moduli in the model are fixed. The particular property of the model was the reduction of the untwisted Higgs spectrum by a combination of symmetric and asymmetric boundary conditions with respect to the internal fermions associated with the compactified dimensions. In this paper we extend the analysis of free fermionic models with reduced Higgs spectrum to the cases in which the SO(10) symmetry is left unbroken, or is reduced to the flipped SU(5) subgroup. We show that all the models that we study in this paper do admit stringent flat directions. The only examples of models that do not admit stringent flat directions remain the strandard-like models of reference Phys. Rev. D 78 (2008) 046009.Comment: 38 pages, 1 figur

    Phases of planar 5-dimensional supersymmetric Chern-Simons theory

    Full text link
    In this paper we investigate the large-NN behavior of 5-dimensional N=1\mathcal{N}=1 super Yang-Mills with a level kk Chern-Simons term and an adjoint hypermultiplet. As in three-dimensional Chern-Simons theories, one must choose an integration contour to completely define the theory. Using localization, we reduce the path integral to a matrix model with a cubic action and compute its free energy in various scenarios. In the limit of infinite Yang-Mills coupling and for particular choices of the contours, we find that the free-energy scales as N5/2N^{5/2} for U(N)U(N) gauge groups with large values of the Chern-Simons 't\,Hooft coupling, λ~N/k\tilde\lambda\equiv N/k. If we also set the hypermultiplet mass to zero, then this limit is a superconformal fixed point and the N5/2N^{5/2} behavior parallels other fixed points which have known supergravity duals. We also demonstrate that SU(N)SU(N) gauge groups cannot have this N5/2N^{5/2} scaling for their free-energy. At finite Yang-Mills coupling we establish the existence of a third order phase transition where the theory crosses over from the Yang-Mills phase to the Chern-Simons phase. The phase transition exists for any value of λ~\tilde\lambda, although the details differ between small and large values of λ~\tilde\lambda. For pure Chern-Simons theories we present evidence for a chain of phase transitions as λ~\tilde\lambda is increased. We also find the expectation values for supersymmetric circular Wilson loops in these various scenarios and show that the Chern-Simons term leads to different physical properties for fundamental and anti-fundamental Wilson loops. Different choices of the integration contours also lead to different properties for the loops.Comment: 40 pages, 17 figures, Minor corrections, Published versio
    corecore