97 research outputs found

    Free-Living Physical Activity Energy Expenditure Is Strongly Related to Glucose Intolerance in Cameroonian Adults Independently of Obesity

    Get PDF
    OBJECTIVE—We examined the cross-sectional association between objectively measured free-living physical activity energy expenditure (PAEE) and glucose tolerance in adult Cameroonians without known diabetes

    Free-Living Physical Activity Energy Expenditure Is Strongly Related to Glucose Intolerance in Cameroonian Adults Independently of Obesity

    Get PDF
    OBJECTIVE—We examined the cross-sectional association between objectively measured free-living physical activity energy expenditure (PAEE) and glucose tolerance in adult Cameroonians without known diabetes

    Deriving an optimal threshold of waist circumference for detecting cardiometabolic risk in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Waist circumference (WC) thresholds derived from western populations continue to be used in sub-Saharan Africa (SSA) despite increasing evidence of ethnic variation in the association between adiposity and cardiometabolic disease and availability of data from African populations. We aimed to derive a SSA-specific optimal WC cut-point for identifying individuals at increased cardiometabolic risk. METHODS: We used individual level cross-sectional data on 24 181 participants aged ⩾15 years from 17 studies conducted between 1990 and 2014 in eight countries in SSA. Receiver operating characteristic curves were used to derive optimal WC cut-points for detecting the presence of at least two components of metabolic syndrome (MS), excluding WC. RESULTS: The optimal WC cut-point was 81.2 cm (95% CI 78.5-83.8 cm) and 81.0 cm (95% CI 79.2-82.8 cm) for men and women, respectively, with comparable accuracy in men and women. Sensitivity was higher in women (64%, 95% CI 63-65) than in men (53%, 95% CI 51-55), and increased with the prevalence of obesity. Having WC above the derived cut-point was associated with a twofold probability of having at least two components of MS (age-adjusted odds ratio 2.6, 95% CI 2.4-2.9, for men and 2.2, 95% CI 2.0-2.3, for women). CONCLUSION: The optimal WC cut-point for identifying men at increased cardiometabolic risk is lower (⩾81.2 cm) than current guidelines (⩾94.0 cm) recommend, and similar to that in women in SSA. Prospective studies are needed to confirm these cut-points based on cardiometabolic outcomes.International Journal of Obesity advance online publication, 31 October 2017; doi:10.1038/ijo.2017.240

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Full text link
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29–39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    Full text link
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
    corecore