1,294 research outputs found

    High Curie temperature Mn 5 Ge 3 thin films produced by non-diffusive reaction

    Full text link
    Polycrystalline Mn 5 Ge 3 thin films were produced on SiO 2 using magnetron sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ X-ray diffraction and atomic force microscopy were used to determine the layer structures, and magnetic force microscopy, superconducting quantum interference device and ferromagnetic resonance were used to determine their magnetic properties. RD-mediated layers exhibit similar magnetic properties as MBE-grown monocrystalline Mn 5 Ge 3 thin films, while NDR-mediated layers show magnetic properties similar to monocrystalline C-doped Mn 5 Ge 3 C x thin films with 0.1≤x≤0.2.0.1 \leq x \leq 0.2. NDR appears as a CMOS-compatible efficient method to produce good magnetic quality high-curie temperature Mn 5 Ge 3 thin films

    Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms

    Full text link
    We study the angular correlation function of speckle patterns that result from multiple scattering of photons by cold atomic clouds. We show that this correlation function becomes larger than the value given by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic interference effect specific to atom-photon interactions, that could not be observed in other systems such as weakly disordered metals. We provide a complete description of this behavior and expressions that allow for a quantitative comparison with experiments.Comment: 4 pages, 2 figure

    OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT

    Get PDF
    In this work the behavior of NiO-PrO2-ZrO2 catalysts containing various nickel loadings was evaluated in the partial oxidation of methane and oxidative-reforming reactions of methane. The catalysts were characterized by X-Ray Diffraction Analysis (in situ-XRD), Temperature Programmed Reduction (H-2-TPR), Scanning Electron Microscopy (SEM/EDX) and Adsorption-Desorption of nitrogen (BET area). The reactions were carried out at 750 degrees C and 1 atm for 5 hours. The catalysts were studied with different nickel content: 0, 5, 10 and 15% (related to total weight of catalyst, wt%). In both reactions, the catalyst containing the mixture of the three oxides (NiO/PrO2/ZrO2) with 15% nickel (15NiPrZr catalyst) showed the best activity for the conversion of the reactants into Syngas and showed high selectivity for H-2 and CO. The results suggest that the promoter PrO2 and the Ni degrees centers are in a good proportion in the catalyst with 15% Ni. Our results showed that low nickel concentrations in the catalyst led to high metallic dispersion; however, very low nickel concentrations did not favor the methane transformation into Syngas. The catalyst containing only NiO/ZrO2 in the mixture was not sufficient for the catalysis. The presence of the promoter PrO2 was very important for the catalysis of the POM.Univ Fed Sao Paulo, Inst Mar, BR-11070100 Santos, SP, BrazilUniv Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilUniv Fed Sao Carlos, Dept Engn Quim, BR-13565905 Sao Carlos, SP, BrazilUniv Fed Sao Paulo, Inst Mar, BR-11070100 Santos, SP, BrazilWeb of Scienc

    Antiferromagnetic phase of the gapless semiconductor V3Al

    Full text link
    Discovering new antiferromagnetic compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully synthesized via arc-melting and annealing. The antiferromagnetic properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely-oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-third of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1

    A PMMA valveless micropump using electromagnetic actuation

    Get PDF
    We have fabricated and characterized a polymethylmethacrylate (PMMA) valveless micropump. The pump consists of two diffuser elements and a polydimethylsiloxane (PDMS) membrane with an integrated composite magnet made of NdFeB magnetic powder. A large-stroke membrane deflection (~200μm) is obtained using external actuation by an electromagnet. We present a detailed analysis of the magnetic actuation force and the flow rate of the micropump. Water is pumped at flow rates of up to 400µl/min and backpressures of up to 12mbar. We study the frequency-dependent flow rate and determine a resonance frequency of 12 and 200Hz for pumping of water and air, respectively. Our experiments show that the models for valveless micropumps of A. Olsson et al. (J Micromech Microeng 9:34, 1999) and L.S. Pan et al. (J Micromech Microeng 13:390, 2003) correctly predict the resonance frequency, although additional modeling of losses is necessar

    Dynamic patterns of expertise: The case of orthopedic medical diagnosis

    Get PDF
    The aim of this study was to analyze dynamic patterns for scanning femoroacetabular impingement (FAI) radiographs in orthopedics, in order to better understand the nature of expertise in radiography. Seven orthopedics residents with at least two years of expertise and seven board-certified orthopedists participated in the study. The participants were asked to diagnose 15 anteroposterior (AP) pelvis radiographs of 15 surgical patients, diagnosed with FAI syndrome. Eye tracking data were recorded using the SMI desk-mounted tracker and were analyzed using advanced measures and methodologies, mainly recurrence quantification analysis. The expert orthopedists presented a less predictable pattern of scanning the radiographs although there was no difference between experts and non-experts in the deterministic nature of their scan path. In addition, the experts presented a higher percentage of correct areas of focus and more quickly made their first comparison between symmetric regions of the pelvis. We contribute to the understanding of experts' process of diagnosis by showing that experts are qualitatively different from residents in their scanning patterns. The dynamic pattern of scanning that characterizes the experts was found to have a more complex and less predictable signature, meaning that experts' scanning is simultaneously both structured (i.e. deterministic) and unpredictable

    Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide

    No full text
    Thermally grown silicon oxide layer was implanted at room temperature with 300keV Xe at fluences ranging from 0.5 to 5x1016^16Xe/cm2^2. Bubbles created after Xe-implantation provided a low-k silicon oxide that has potential use as a dielectric material for interconnects in Si integrated circuits. Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry (RBS) and Positron Annihilation Spectroscopy (PAS) were used to provide a comprehensive characterization of defects (bubbles, vacancy, gas atoms and other types of defects) created by Xe implantation in SiO2SiO_2 layer. These measurements suggest that the bubbles observed with TEM for all fluences were a consequence of the interaction between Xe and vacancies (V), with VnXemV_nXe_m complexes created in the zone where V and Xe profiles overlap. Negatively charged defects such as (Si−O−Si-O^-, Si−O−O−Si-O-O^- and O2−O_2^-) are also created after implantation

    Transition Phenomena Induced by Internal Noise and Quasi-absorbing State

    Full text link
    We study a simple chemical reaction system and effects of the internal noise. The chemical reaction system causes the same transition phenomenon discussed by Togashi and Kaneko [Phys. Rev. Lett. 86 (2001) 2459; J. Phys. Soc. Jpn. 72 (2003) 62]. By using the simpler model than Togashi-Kaneko's one, we discuss the transition phenomenon by means of a random walk model and an effective model. The discussion makes it clear that quasi-absorbing states, which are produced by the change of the strength of the internal noise, play an important role in the transition phenomenon. Stabilizing the quasi-absorbing states causes bifurcation of the peaks in the stationary probability distribution discontinuously.Comment: 6 pages, 5 figure
    • …
    corecore