1,072 research outputs found

    How effective is the Forestry Commission Scotland's woodland improvement programme--'Woods In and Around Towns' (WIAT)--at improving psychological well-being in deprived urban communities? A quasi-experimental study

    Get PDF
    Introduction: There is a growing body of evidence that suggests that green spaces may positively influence psychological well-being. This project is designed to take advantage of a natural experiment where planned physical and social interventions to enhance access to natural environments in deprived communities provide an opportunity to prospectively assess impacts on perceived stress and mental well-being.<p></p> Study design and methods: A controlled, prospective study comprising a repeat cross-sectional survey of residents living within 1.5 km of intervention and comparison sites. Three waves of data will be collected: prephysical environment intervention (2013); postphysical environment intervention (2014) and postwoodland promotion social intervention (2015). The primary outcome will be a measure of perceived stress (Perceived Stress Scale) preintervention and postintervention. Secondary, self-report outcomes include: mental well-being (Short Warwick-Edinburgh Mental Well-being Scale), changes in physical activity (IPAQ-short form), health (EuroQoL EQ-5D), perception and use of the woodlands, connectedness to nature (Inclusion of Nature in Self Scale), social cohesion and social capital. An environmental audit will complement the study by evaluating the physical changes in the environment over time and recording any other contextual changes over time. A process evaluation will assess the implementation of the programme. A health economics analysis will assess the cost consequences of each stage of the intervention in relation to the primary and secondary outcomes of the study.<p></p> Ethics and dissemination: Ethical approval has been given by the University of Edinburgh, Edinburgh College of Art Research, Ethics and Knowledge Exchange Committee (ref. 19/06/2012). Findings will be disseminated through peer-reviewed publications, national and international conferences and, at the final stage of the project, through a workshop for those interested in implementing environmental interventions.<p></p&gt

    Digital pulse-shape discrimination of fast neutrons and gamma rays

    Full text link
    Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADC's were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.Comment: 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in Physics Research

    Emergency planning and mitigation at Vesuvius: A new evidence-based approach

    Get PDF
    Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands

    Thermal Stability of Neodymium Aluminates High- Îș

    Get PDF
    Thin films of neodymium aluminate (NdAlOx) have been deposited by liquid injection metalorganic chemical vapor deposition (MOCVD) using the bimetallic alkoxide precursor [NdAl(OPri)6(PriOH)]2. The effects of high-temperature postdeposition annealing on NdAlOx thin films are reported. The as-deposited thin films are amorphous in nature. X-ray diffraction (XRD) and medium energy ion scattering (MEIS) show, respectively, no crystallization or interdiffusion of metal ions into the substrate after annealing at 950°C. The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the thin films exhibited good electrical integrity following annealing. The dielectric permittivity (Îș) of the annealed NdAlOx was 12, and a density of interface states at flatband (Dit) of 4.01×1011  cm−2 eV−1 was measured. The deposited NdAlOx thin films are shown to be able to endure high-temperature stress and capable of maintaining excellent dielectric properties

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453

    Striving for excellence in maternity care: The Maternity Stream of the City of Sanctuary.

    Get PDF
    yesAsylum-seeking and refugee (AS&R) women living in the UK often have complex health and social care needs, with poor underlying mental and physical health and an increased risk of negative pregnancy outcomes. Despite this, AS&R women are less likely to attend for timely maternity care and when they do, care may be poor, with staff not understanding their specific needs and displaying poor attitudes. This article discusses the Maternity Stream of the City of Sanctuary and how this charity aims to work with statutory and voluntary sector maternity-related services and groups to develop services that are inclusive for AS&R women and meet their specific needs. Volunteer AS&R women are central to the activities of the Maternity Stream and this article discusses how they engage with midwives and other maternity workers to facilitate the development of services that may ultimately improve pregnancy outcomes for AS&R women

    Assessing future vent opening locations at the Somma-Vesuvio volcanic complex:1. A new information geodatabase with uncertainty characterizations

    Get PDF
    This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma‐Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma‐Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub‐Plinian eruptions (i.e., large‐ or medium‐scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small‐scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma‐Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma‐Vesuvio caldera, with specific attention focused on large or medium explosive events.Published4336-43566V. Pericolosità vulcanica e contributi alla stima del rischioJCR Journa

    User-definable resource bounds analysis for logic programs

    Get PDF
    We present a static analysis that infers both upper and lower bounds on the usage that a logic program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower-bound) resource usage functions for all predicates in the program. We also present an assertion language which is used to define both such resources and resourcerelated properties that the system can then check based on the results of the analysis. We have performed some preliminary experiments with some concrete resources such as execution steps, bytes sent or received by an application, number of files left open, number of accesses to a datĂĄbase, number of calis to a procedure, number of asserts/retracts, etc. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization
    • 

    corecore