41 research outputs found

    Introduction to the Special Issue: The Role of Seed Dispersal in Plant Populations: Perspectives and Advances in a Changing World

    Get PDF
    Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal. To tackle these important knowledge gaps, we established the CoDisperse Network and convened an interdisciplinary, NSF-sponsored Seed Dispersal Workshop in 2016, during which we explored the role of seed dispersal in plant population dynamics (NSF DEB Award # 1548194). In this Special Issue, we consider the current state of seed dispersal ecology and identify the following collaborative research needs: (i) the development of a mechanistic understanding of the movement process influencing dispersal of seeds; (ii) improved quantification of the relative influence of seed dispersal on plant fitness compared to processes occurring at other life history stages; (iii) an ability to scale from individual plants to ecosystems to quantify the influence of dispersal on ecosystem function; and (iv) the incorporation of seed dispersal ecology into conservation and management strategies

    Non-native insects dominate daytime pollination in a high-elevation Hawaiian dryland ecosystem

    Get PDF
    PREMISE OF THE STUDY: Over one-third of the native flowering plant species in the Hawaiian Islands are listed as federally threatened or endangered. Lack of sufficient pollination could contribute to reductions in populations, reproduction, and genetic diversity among these species but has been little studied. METHODS: We used systematic observations and manual flower treatments to quantify flower visitation and outcrossing dependency of eight native (including four endangered) plant species in a dryland ecosystem in Hawaii: Argemone glauca, Bidens menziesii, Dubautia linearis, Haplostachys haplostachya, Sida fallax, Silene lanceolata, Stenogyne angustifolia, and Tetramolopium arenarium. KEY RESULTS: During 576.36 h of flower observations, only insects visited the flowers. Out of all recorded flower visits, 85% were performed by non-native species, particularly the honeybee (Apis mellifera) and flies in the family Syrphidae. Some plant species received little visitation (e.g., S. angustifolia received one visit in 120 h of observation), whereas others were visited by a wide diversity of insects. The endangered plant species were visited by fewer visitor taxa than were the common native plant species. For six of the focal plant species, bagging of flowers to exclude pollinators resulted in significant reductions in seed set. CONCLUSIONS: The flower visitor community in this system, although heavily dominated by non-native insects, appears to be facilitating pollination for multiple plant species. Non-native insects may thus be sustaining biotic interactions otherwise threatened with disruption in this island ecosystem. This may be particularly important for the studied endangered plant species, which exhibit fewer partners than the more common plant species

    Absence of native flower visitors for the endangered Hawaiian mint \u3ci\u3eStenogyne angustifolia\u3c/i\u3e: Impending ecological extinction?

    Get PDF
    If an organism becomes rare enough that it no longer participates in certain interspecific interactions, it can be said to have become ecologically extinct, even though it is still present. This form of extinction is much less recognized than global extinctions, although it may have ramifications for ecological community function. Here, we describe a case of possible or pending ecological extinction of an endemic Hawaiian plant. We performed over 120 h of systematic flower visitation observations of the endangered Hawaiian mint, Stenogyne angustifolia, in its wild habitat. The robust size and open shape of S. angustifolia flowers, along with their high accessibility, visibility, and nectar content, suggest that they are adapted to animal-mediated pollination. However, only one flower visitor was observed at our focal high-elevation study site: an individual of the non-native bee species Lasioglossum impavidum. Experimental pollination treatments indicate that S. angustifolia is self-compatible and demonstrates some autogamy, setting fruit and seed in the absence of pollinators. However, experimental additions of pollen increased fruit production, indicating that plants are pollen-limited and that lack of pollinators carries a reproductive cost for this species. Ecological communities throughout Hawaii are highly modified, and the distribution and diversity of the native pollinator community that occurred with S. angustifolia prior to these changes are wholly unknown. Nevertheless, the lack of visitation by native pollinators and extremely rare visitation by non-native pollinators suggest that this plant is today contributing little to pollination networks in its high-elevation habitat

    Operationalizing resilience for conservation objectives: the 4S’s

    Get PDF
    Although resilience thinking is increasingly popular and attractive among restoration practitioners, it carries an abstract quality that hinders effective application. Because resilience and its components are defined differently in social and ecological contexts, individual managers or stakeholders may disagree on the definition of a system’s state, occurrence of a state change, preferred state characteristics, and appropriate methods to achieve success. Nevertheless, incentives and mandates often force managers to demonstrate how their work enhances resilience. Unclear or conflicting definitions can lead to ineffective or even detrimental decision-making in the name of resilience; essentially, any convenient action can be touted as resilience-enhancing in this case. We contend that any successful resilience management project must clearly identify up-front the stressors of concern, state traits, scales of appropriate management, and success indicators (the 4S’s) relevant to the management targets. We propose a deliberate process for determining these components in advance of resilience management for conservation. Our recommendations were inspired and informed by two case studies wherein different definitions of stressors, state, scales, and success would result in very different management choices, with potentially serious consequences for biodiversity targets

    Invasive predators affect community-wide pollinator visitation

    Get PDF
    Disruption of plant–pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai’i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator–pollinator–plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations

    Coupled ecological and management connectivity across administrative boundaries in undeveloped landscapes

    Get PDF
    Human-induced ecological boundaries, or anthropogenic ecotones, may arise where administrative boundaries meet on undeveloped lands. Landscape-level ecological processes related to factors such as fire, invasive species, grazing, resource extraction, wildlife, and water may be affected due to unique management strategies adopted by each administrative unit. Over time, different management can result in discernible ecological differences (e.g., species composition or soil characteristics). Thus, fragmentation in the management landscape can correspond to ecological fragmentation. Different ecological patterns may emerge due to an increase in the number of management units in a region, or due to an increase in the number of different types of management units in the region. Temporal effects and collaboration history can also affect the emergence of ecotones. We use conceptual models to explore the relationship between these aspects of management fragmentation and the anthropogenic ecotones between management parcels. We then use examples of different management challenges to explore how anthropogenic ecotones can disrupt ecological flows. Our models suggest that cross-boundary collaboration that enhances management connectivity is likely essential to ecological connectivity in the face of environmental and social change

    Quantifying ecological variation across jurisdictional boundaries in a management mosaic landscape

    Get PDF
    Context Large landscapes exhibit natural heterogeneity. Land management can impose additional variation, altering ecosystem patterns. Habitat characteristics may reflect these management factors, potentially resulting in habitat differences that manifest along jurisdictional boundaries. Objectives We characterized the patchwork of habitats across a case study landscape, the Grand Canyon Protected Area-Centered Ecosystem. We asked: how do ecological conditions vary across different types of jurisdictional boundaries on public lands? We hypothesized that differences in fire and grazing, because they respond to differences in management over time, contribute to ecological differences by jurisdiction. Methods We collected plot-scale vegetation and soils data along boundaries between public lands units surrounding the Grand Canyon. We compared locations across boundaries of units managed differently, accounting for vegetation type and elevation differences that pre-date management unit designations. We used generalized mixed effects models to evaluate differences in disturbance and ecology across boundaries. Results Jurisdictions varied in evidence of grazing and fire. After accounting for these differences, some measured vegetation and soil properties also differed among jurisdictions. The greatest differences were between US Forest Service wilderness and Bureau of Land Management units. For most measured variables, US Forest Service non-wilderness units and National Park Service units were intermediate. Conclusions In this study, several ecological properties tracked jurisdictional boundaries, forming a predictable patchwork of habitats. These patterns likely reflect site differences that pre-date jurisdictions as well as those resulting from different management histories. Understanding how ecosystem differences manifest at jurisdictional boundaries can inform resource management, conservation, and cross-boundary collaborations

    Advancing an interdisciplinary framework to study seed dispersal ecology

    Get PDF
    Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity

    Twin's Birth-Order Differences in Height and Body Mass Index From Birth to Old Age : A Pooled Study of 26 Twin Cohorts Participating in the CODATwins Project

    Get PDF
    We analyzed birth order differences in means and variances of height and body mass index (BMI) in monozygotic (MZ) and dizygotic (DZ) twins from infancy to old age. The data were derived from the international CODATwins database. The total number of height and BMI measures from 0.5 to 79.5 years of age was 397,466. As expected, first-born twins had greater birth weight than second-born twins. With respect to height, first-born twins were slightly taller than second-born twins in childhood. After adjusting the results for birth weight, the birth order differences decreased and were no longer statistically significant. First-born twins had greater BMI than the second-born twins over childhood and adolescence. After adjusting the results for birth weight, birth order was still associated with BMI until 12 years of age. No interaction effect between birth order and zygosity was found. Only limited evidence was found that birth order influenced variances of height or BMI. The results were similar among boys and girls and also in MZ and DZ twins. Overall, the differences in height and BMI between first-and second-born twins were modest even in early childhood, while adjustment for birth weight reduced the birth order differences but did not remove them for BMI.Peer reviewe
    corecore