36 research outputs found

    Effect of Phosphorus on Root Signaling of Wheat under Different Water Regimes

    Get PDF
    Phosphorus (P) is one of the most vital nutrient needed for crop production. Phosphorus plays an important role in root growth and builds resistance against abiotic stresses. In the current study two wheat cultivars (phosphorus responsive) were planted to study the treatment effects in polythene bags. The treatments were 5 different levels of P (P0 = 0.2 g/bag, P60 = 0.4 g/bag, P80 = 0.53 g/bag, P100 = 0.66 g/bag and P120 = 0.8 g/bag) and three water regimes. The data regarding root length, shoot length, root-shoot ratio and yield parameters were collected and analyzed. Among both the genotypes, NARC-2009 performed well compared to Sehar-06. The highest dry matter and yield were obtained under P100 compared to other treatments. With the increased phosphorus root and shoot length increased linearly up-to P100 while afterward it starts decreasing. The results lead to conclusion that optimum dose of phosphorus could be used to increase root growth and establishment under water stress

    Fractal fractional derivative on chemistry kinetics hires problem

    Get PDF
    In this work, we construct the fractional order model for chemical kinetics issues utilizing novel fractal operators such as fractal fractional by using generalized Mittag-Leffler Kernel. To overcome the constraints of the traditional Riemann-Liouville and Caputo fractional derivatives, a novel notion of fractional differentiation with non-local and non-singular kernels was recently presented. Many scientific conclusions are presented in the study, and these results are supported by effective numerical results. These findings are critical for solving the nonlinear models in chemical kinetics. These concepts are very important to use for real life problems like brine tank cascade, recycled brine tank cascade, pond pollution, home heating and biomass transfer problem. Many scientific results are presented in the paper also prove these results by effective numerical results. These results are very important for solving the nonlinear model in chemistry kinetics which will be helpful to understand the chemical reactions and its actual behavior; also the observation can be developed for future kinematic chemical reactions with the help of these results

    Paclobutrazol Improves Sesame Yield by Increasing Dry Matter Accumulation and Reducing Seed Shattering Under Rainfed Conditions

    Get PDF
    Several biotic and abiotic stresses significantly decrease the biomass accumulation and seed yield of sesame crops under rainfed areas. However, plant growth regulators (such as Paclobutrazol) can improve the total dry matter and seed production of the sesame crop. The effects of the paclobutrazol application on dry matter accumulation and seed yield had not been studied before in sesame under rainfed conditions. Therefore, a two-year field study during 2018 and 2019 was conducted with key objectives to assess the impacts of paclobutrazol on leaf greenness, leaf area, total dry matter production and partitioning, seed shattering, and seed yield of sesame. Two sesame cultivars (TS-5 and TS-3) were treated with four paclobutrazol concentrations (P0 = Control, P1 = 100 mg L-1, P2 = 200 mg L-1, P3 = 300 mg L-1). The experiment was executed in RCBD-factorial design with three replications. Compared with P0, treatment P3 improved the leaf greenness of sesame by 17%, 38%, and 60% at 45, 85, and 125 days after sowing, respectively. However, P3 treatment decreased the leaf area of sesame by 14% and 20% at 45 and 85 days after sowing than P0, respectively. Compared with P0, treatment P3 increased the leaf area by 46% at 125 days after sowing. On average, treatment P3 also improved the total biomass production by 21% and partitioning in roots, stems, leaves, capsules, and seeds by 23%, 19%, 23%, 22%, and 40%, respectively, in the whole growing seasons as compared to P0. Moreover, under P3 treatment, sesame attained the highest seed yield and lowest seed shattering by 27% and 30%, respectively, compared to P0. This study indicated that by applying the paclobutrazol concentration at the rate of 300 mg L-1 in sesame, the leaf greenness, leaf areas, biomass accumulation, partitioning, seed yield, and shatter resistance could be improved. Thus, the optimum paclobutrazol level could enhance the dry matter accumulation and seed production capacity of sesame by decreasing shattering losses under rainfed conditions

    Can sulphur improve the nutrient uptake, partitioning, and seed yield of sesame?

    Get PDF
    Sulphur (S) is considered to improve the nutrient uptake of plants due to its synergistic relationship with other nutrients. This could ultimately enhance the seed yield of oilseed crops. However, there is limited quantitative information on nutrient uptake, distribution, and its associated impacts on seed yield of sesame under the S application. Thus, a two-year field study (2018 and 2019) was conducted to assess the impacts of different S treatments (S-0 = Control, S-20 = 20, S-40 = 40, and S-60 = 60 kg ha(-1)) on total dry matter production, nitrogen, phosphorus, potassium, S uptake and distribution at the mid-bloom stage and physiological maturity. Furthermore, treatment impacts were studied on the number of capsules per plant, number of seeds per capsule, thousand seed weight, and seed yield at physiological maturity in sesame. Compared to S-0, over the years, treatment S-40 significantly increased the total uptake of nitrogen, phosphorus, potassium, and S (by 13, 22, 11% and 16%, respectively) at physiological maturity, while their distribution by 13, 36, 14, and 24% (in leaves), 12, 15, 11, and 15% (in stems), 15, 42, 18, and 10% (in capsules), and 14, 22, 9, and 15% (in seeds), respectively. Enhanced nutrient uptake and distribution in treatment S-40 improved the total biomass accumulation (by 28%) and distribution in leaves (by 34%), stems (by 27%), capsules (by 26%), and seeds (by 28%), at physiological maturity, as compared to S-0. Treatment S-40 increased the number of capsules per plant (by 13%), number of seeds per capsule (by 11%), and thousand seed weight (by 6%), compared to S-0. Furthermore, over the years, relative to control, sesame under S-40 had a higher seed yield by 28% and enhanced the net economic returns by 44%. Thus, our results suggest that optimum S level at the time of sowing improves the nutrient uptake and distribution during the plant lifecycle, which ultimately enhances total dry matter accumulation, seed yield, and net productivity of sesame

    Underutilized Grasses Production: New Evolving Perspectives

    Get PDF
    Globally, over-reliance on major food crops (wheat, rice and maize) has led to food basket’s shrinking, while climate change, environmental pollution and deteriorating soil fertility demand the cultivation of less exhaustive but nutritious grasses. Unlike neglected grasses (grass species restricted to their centres of origin and only grown at the subsistence level), many underutilized grasses (grass species whose yield or usability potential remains unrealized) are resistant and resilient to abiotic stresses and have multiple uses including food (Coix lacryma-jobi), feed (Eragrostis amabilis and Cynodon dactylon), esthetic value (Miscanthus sinensis and Imperata cylindrica), renewable energy production (Spartina pectinata and Andropogon gerardii Vitman) and contribution to ecosystem services (Saccharum spontaneum). Lack of agricultural market globalization, urbanization and prevalence of large commercial enterprises that favor major grasses trade, improved communication means that promoted specialization in favor of established crops, scant planting material of underutilized grasses and fewer research on their production technology and products development are the prime challenges posed to underutilized grasses promotion. Integration of agronomic research with novel plant protection measures and plant breeding and molecular genetics approaches for developing biotic and abiotic stresses tolerant cultivars along with the development of commercially attractive food products hold the future key for promoting underutilized grasses for supplanting food security and sustainably multiplying economic outcomes

    Microalgae-based biofuels, resource recovery and wastewater treatment: a pathway towards sustainable biorefinery

    Get PDF
    Intense utilization of natural fuel resources is threatening the global environment and societal sustainability. It triggers up the need for finding environmental-friendly and sustainable sources of energy. In this perspective, microalgae have emerged as a potential alternative. Microalgae are featured with distinct ability to provide ecological services and respond to the sustainability challenges simultaneously. Microalgae can fix atmospheric CO2, valorize waste resources and can produce a wide variety of bio-products. The promising features of microalgae pitch the idea of establishing a sustainable bio-refinery to draw multifaceted benefits and reinforce the objectives of resource efficient bio-economy. Unfortunately, in the last few years, preferential studies have been carried out to assess the potential of microalgae-based integrated bio-refinery. This review critically discussed the recent developments, opportunities, and barriers in the microalgae bio-industry and wastewater treatment. Particularly, microalgae potentials for biofuels and resources recovery are addressed towards sustainable biorefinery. Moreover, techno-economic and commercial viability of microalgae-led bio-refinery is reviewed to drive this technology towards practicality

    Foliar application of liquiritin protects Chinese flowering cabbage against cucumber mosaic virus and increases health-promoting compounds

    Get PDF
    Decades of research have revealed notable similarities between the immune systems of the plant and animal kingdoms. Liquiritin has long been used to stimulate the body immunity in animals against an array of diseases. Considering the homology of some induced immune responses between animals and plants, we examined the effects of exogenously applied liquiritin to stimulate defense responses in Chinese flowering cabbage plants against cucumber mosaic virus (CMV) infection under greenhouse and field conditions. Foliar application of liquiritin (200 ppm) effectively suppressed the development of CMV symptoms by not less than 40% compared with the control in cabbage plants in both greenhouse and field trials along with the significant increases in the marketable yield and nutritional quality of cabbage. Liquiritin application enhanced the production of phenolic compounds and different defense-related enzymes in treated plants. Moreover, quantitative real-time PCR analysis revealed that liquiritin significantly up-regulated the expression of different defense-related genes upon pathogen inoculation, indicating an induction of the salicylic acid-mediated defense system. Collectively, the findings of this study indicate that liquiritin can effectively control CMV in cabbage plants.This study was supported by funding from the Science and Technology Foundation of Guangdong Province (Project No: 2020B0202090002); Guangdong Agriculture Department of China (2020KJ122) and Science and Technology Foundation of China (Project No: QN2020013006).Peer reviewe

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
    corecore