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Abstract
Several biotic and abiotic stresses significantly decrease the biomass accumulation and seed yield of sesame crops under 
rainfed areas. However, plant growth regulators (such as Paclobutrazol) can improve the total dry matter and seed produc-
tion of the sesame crop. The effects of the paclobutrazol application on dry matter accumulation and seed yield had not been 
studied before in sesame under rainfed conditions. Therefore, a two-year field study during 2018 and 2019 was conducted with 
key objectives to assess the impacts of paclobutrazol on leaf greenness, leaf area, total dry matter production and partition-
ing, seed shattering, and seed yield of sesame. Two sesame cultivars (TS-5 and TS-3) were treated with four paclobutrazol 
concentrations (P0 = Control, P1 = 100 mg L−1, P2 = 200 mg L−1, P3 = 300 mg L−1). The experiment was executed in RCBD-
factorial design with three replications. Compared with P0, treatment P3 improved the leaf greenness of sesame by 17%, 38%, 
and 60% at 45, 85, and 125 days after sowing, respectively. However, P3 treatment decreased the leaf area of sesame by 14% 
and 20% at 45 and 85 days after sowing than P0, respectively. Compared with P0, treatment P3 increased the leaf area by 
46% at 125 days after sowing. On average, treatment P3 also improved the total biomass production by 21% and partitioning 
in roots, stems, leaves, capsules, and seeds by 23%, 19%, 23%, 22%, and 40%, respectively, in the whole growing seasons 
as compared to P0. Moreover, under P3 treatment, sesame attained the highest seed yield and lowest seed shattering by 27% 
and 30%, respectively, compared to P0. This study indicated that by applying the paclobutrazol concentration at the rate of 
300 mg L−1 in sesame, the leaf greenness, leaf areas, biomass accumulation, partitioning, seed yield, and shatter resistance 
could be improved. Thus, the optimum paclobutrazol level could enhance the dry matter accumulation and seed production 
capacity of sesame by decreasing shattering losses under rainfed conditions.
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Introduction

Sesame (Sesamum indicum L.) is the major conventional 
oilseed crop, specially grown in marginal lands and drought-
prone areas under rainfed conditions (Pathak et al. 2014). It 
is one of the high oil containing oilseed crops ranging from 
50 to 60%, depending upon the variety (Raja et al. 2007; 
Wei et al. 2015). Sesame oil contains important antioxidants, 
i.e., sesamolin, and sesamol, which prevents its oil’s rancid-
ity (Rangkadilok et al. 2010), and its oil is a rich source 
of important unsaturated fatty acids, e.g., oleic acid (42%) 
and linolenic acid (35%) (Uzun et al. 2008). Additionally, 
the sesame meal contains ash (5.27%), fiber (6.22%), and 
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carbohydrates (28.14%) that are highly nutritious for live-
stock (Raza et al. 2018).

Several biotic and abiotic stresses adversely affect the 
yield components (i.e., capsule number per plant and seed 
number per capsule) of sesame, especially in rainfed regions 
(Jiang et al. 2009; Thornton et al. 2014). Among all these 
abiotic stresses, the high-temperature and drought are the 
most limiting factors, which negatively impact the growth 
and development of sesame in rainfed conditions (Ciaffi 
et al. 1996; Raza et al. 2018). However, selecting the suit-
able cultivars (e. g., drought-resistant varieties) and better 
agronomic management practices (e. g., appropriate sowing 
date) significantly increased the seed yield of crops (Raza 
et al. 2018). In addition to these constraints, seed shattering 
is another important factor that considerably decreases the 
sesame production.

Shattering is referred to the seed loss from ruptured cap-
sules before or during the harvesting. Several factors are 
responsible for shattering losses, such as internal or external 
stresses, contact among the plant parts or harvest machin-
ery, and fluctuations in temperature, humidity, and capsule 
moisture (Kadkol et al. 1984). However, these losses can 
be reduced to a certain extent by selecting shatter-resistant 
cultivar or through some innovative agronomic management 
options such as using plant growth regulators (Kuai et al. 
2015). Several plant growth regulators like paclobutrazol, 
mepiquat chloride, and chlorocholine chloride were used 
effectively to regulate plant growth and development (Kumar 
et al. 2012). On top of that, Paclobutrazol application has 
been reported in earlier studies to minimize shattering 
losses in shatter-prone crops (Tripathi et al. 2003; Rajala 
et al. 2002). Moreover, paclobutrazol was effectively used 
to enhance the productivity and manage seed shattering in 
Birds-foot-trefoil (Lotus corniculatus L.) (Wiggans et al. 
1956) and canola (Brassica napus L.) (Kuai et al. 2015).

Paclobutrazol is a triazole compound used to regulate 
the growth and physiological process in many plant spe-
cies. Paclobutrazol regulates plants’ growth and physiologi-
cal functioning by interfering with sterol and gibberellic acid 
biosynthesis (Khalil and Rahman 1995; Khan 2009) that 
inhibits the oxidation of ent-kaurene to ent-kauronoic acid 
through inactivating cytochrome P-450 dependent oxyge-
nase (Zhu et al. 2004; Rady and Gaballah 2012). Therefore, 

paclobutrazol could be used as stress protectants to regulate 
the plant water relations (such as capsule moisture) and shat-
tering under stress conditions. Previous research findings 
have revealed that paclobutrazol application with appropri-
ate concentration can significantly regulate the morphologi-
cal and growth responses and improve the seed yield and 
shattering resistance of plants (Kuai et al. 2015; Zhou and 
Xi 1993; Armstrong and Nicol 1991; Baylis and Hutley‐Bull 
1991). Conversely, paclobutrazol application at high rates 
significantly reduced the crop yields (Guoping et al. 2001; 
Peng et al. 2014). Hence, the effects of paclobutrazol appli-
cation on plant growth characteristics, seed yield, and shatter 
resistance could be erratic since they do not only depend on 
the plant potential but also interlinked with several other 
factors such as weather conditions, management practices, 
and plant responsiveness (Scarisbrick et al. 1985; Oswalt 
et al. 2014).

Thus, a comprehensive study was needed to determine 
paclobutrazol’s optimum level for higher sesame produc-
tion, especially under rainfed conditions. Therefore, a two-
year field study was initiated to understand the responses of 
sesame to paclobutrazol application. The key objectives of 
this study were to; (1) investigate the impacts of paclobutra-
zol application on biomass accumulation, seed yield, and 
yield components of sesame, and (2) determine the opti-
mum paclobutrazol level to increase seed shatter resistance 
in sesame under rainfed conditions.

Material and Methods

Research Site Description

This field experiment was carried out at Koont-farm 
(33°07′10.9′′ N, 73°00′37.7′′ E, 520  m elevation), the 
research area of PMAS-Arid Agriculture University Raw-
alpindi, Province Punjab, Pakistan, during two growing 
seasons in 2018 and 2019, respectively. The climate of the 
research area falls under the dry sub-humid region with 
high rainfall. Weather data, including rainfall, maximum 
and minimum temperature of the experimental site for both 
growing seasons, are presented in Table 1. According to 
the world reference base for soil resources (2015) map, 

Table 1  Monthly minimum 
temperature (Tmin), maximum 
temperature (Tmax), and 
rainfall during the growing 
seasons of 2018 and 2019

Month 2018 2019

Tmin (°C) Tmax (°C) Rainfall (mm) Tmin (°C) Tmax (°C) Rainfall (mm)

July 26.4 36.1 239.4 27.1 36.9 218.0
August 25.6 34.1 211.0 24.9 34.2 122.4
September 22.2 33.2 40.2 23.8 34.2 124.4
October 16.6 30.1 28.4 17.3 28.9 24.3
November 11.7 25.0 22.2 12.3 23.1 51.1
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the soil of the experimental site falls under the category of 
“durisols, calcisols, gypsisols, solonchaks, solonetz” with 
pH 7.2, electrical conductivity 1.02 dSm−1, available nitro-
gen 0.28 g kg−1, available phosphorus 2.5 g kg−1, available 
potassium 95 g kg−1, organic matter 0.55%, saturation 34%, 
and bulk density 1.23 g cm−3 in the topsoil layer of 20 cm.

Experimental Details

This experiment was conducted in RCBD-factorial design 
with three replications. The field study consisted of two 
sesame cultivars (TS-5 and TS-3) and four paclobutrazol 
concentrations (P0-Control, P1-100, P2-200, and P3-300 mg 
 L−1). Paclobutrazol treatments were applied twice with the 
same dose at the pre-reproductive (35 days after sowing) 
and late-bloom (80 days after sowing) stages following the 
previously published phenological scale (Langham 2007). 
Each plot’s size was 30  m2 (6 m length × 5 m wide), and the 
total area of the experimental plots was 720  m2  (30m2 × 24 
plots). We chose the pre-reproductive stage, to regulate the 
plant height and number of branches during early vegetative 
growth while the late bloom-stage to improve the seed yield 
and crop shatter resistance at the maturity. Paclobutrazol in 
liquid form was evenly mixed with distilled water, and each 
paclobutrazol treatment was foliar applied with a recharge-
able electric knapsack sprayer.

Sesame was planted in the first week of July and harvested 
in the second week of November in both years. Sowing was 
performed with a single row hand-operated seed drill at 
the seeding depth of 2 cm, and the seed rate was applied at 
5 kg ha−1. Row to row (R-R) and plant to plant (P-P) dis-
tance was maintained at 45 cm and 10 cm, respectively, by 
over-seeding at sowing. Then thinning was done after fifteen 
days of germination, which resulted in the planting density 
of 200,000 plants  ha−1. All the other recommended practices 
were performed uniformly in all experimental units.

Measurements

The crop phenological stages were determined by using a 
previously described phenological scale (Langham 2007). 
The leaf greenness of sesame plants was measured from 
each applied treatment at 45, 85, and 125 days after sowing 
(DAS). The chlorophyll meter SPAD-502 (Konica Minolta, 
Japan) was used for measuring the leaf greenness from dif-
ferent points of sesame plant, and then average values of 
SPAD were recorded at each interval. Similarly, the leaf area 
of sesame plants from all the applied treatments was deter-
mined at 45, 85, and 125 DAS. For this purpose, five sesame 
plants at each interval were destructively sampled from each 
experimental plot. The following formula was then used to 
determine the leaf area of sesame (Silva et al. 2002).

where “AF” is the leaf area  (cm2) of sesame, “L” and “W” 
is the length and width of leaf, whereas “f” is the correction 
factor, which is 0.70 for sesame.

The biomass accumulation and partitioning in sesame 
plants were measured at 45, 85, and 125 DAS by destructive 
sampling. Fifteen sesame plants from each treatment were 
harvested manually, including the roots by carefully digging 
the soil, and roots were rinsed with water to remove adhering 
soil. Then all the plants were separated into roots, leaves, 
stems, capsules, and seeds. All the plant organs were oven-
dried first at 105 °C for one hour to kill the fresh tissues, 
then at 70 °C to obtain the constant weight for total biomass 
accumulation and partitioning analysis (Raza et al. 2019).

When more than 90% of capsules attained the mature 
capsule color, twenty representative plants from the two cen-
tral rows of each sub-plot were harvested manually using a 
sickle; bundles were made and sundried for one week by 
keeping the plants in a vertical direction. After drying, plants 
were threshed manually to determine the seed yield and yield 
components (number of capsules  plant−1, number of seeds 
 capsule−1, and thousand seed weight) of sesame under the 
applied treatments. Twenty representative plants from each 
plot were selected, and the number of capsules  plant−1 was 
counted, and then the average number of capsules  plant−1 
was calculated. For the number of seeds  capsule−1, hundred 
capsules were randomly taken from each plot at harvesting, 
then capsules were threshed to count the number of seeds 
 capsule−1, and the average was calculated. Similarly, for a 
thousand seed weight, three lots of thousand sources from 
bulk seed lot of each plot were oven-dried at 65 °C to attain 
the constant weight. Thousand seed weight was measured 
using electrical balance, and the average was calculated. 
Seed yield was determined by manually threshing the sun-
dried bundles from each plot and then converted to kg  ha−1.

The sesame seed shatter resistance under the studied 
treatments was measured by comparing the seed losses 
among shattered and non-shattered capsules. Hundred non-
shattered and hundred shattered capsules were clipped from 
the plants of each treatment. Capsules were threshed manu-
ally to obtain seed weight and compared to calculate the 
shattering losses and shattering percentage for sesame under 
different paclobutrazol treatments (Gan et al. 2008).

Statistics Analysis

Statistical analysis was performed with Statistix 8.1 
(V.8.1, Statistix, USA). Significant differences among 
cultivars and paclobutrazol treatments were computed 
using a two-way Analysis of Variance (ANOVA) tech-
nique combined with the least significant difference 
(LSD) Test. The significance of the difference between 

AF = (L × W) × f
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means was evaluated at a 5% probability level (p < 0.05). 
The Shapiro–Wilk and Kolmogorov–Smirnov normal-
ity tests were conducted to confirm that the data can be 
subjected to analysis of regression (Montgomery 2017). 
Afterwards linear regression analysis was conducted 
between paclobutrazol doses and grain yield to see 
impacts of treatments.

Results

Leaf Greenness

The paclobutrazol application significantly enhanced the leaf 
greenness of the sesame plant at 45, 85, and 125 DAS. Treat-
ment P3 had the greatest influence on the leaf greenness of 
sesame plants compared to control (Fig. 1). For instance, 
the average across the years, treatment P3 (300 mg  L−1) 
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Fig. 1  Leaf greenness of sesame at 45, 85, and 125 days after sowing (DAS) in 2018 and 2019. The P0, P1, P2, and P3 represent the paclobutra-
zol treatments, Control, 100 mg  L−1, 200 mg  L−1, and 300 mg  L−1, respectively. Means are averaged over three replicates



341International Journal of Plant Production (2021) 15:337–349 

1 3

increased the leaf greenness of sesame plants by 17%, 38%, 
and 60% at 45, 85, and 125 DAS, respectively, than the con-
trol treatment, indicating that the paclobutrazol application 
can significantly improve the leaf greenness of the sesame 
plant.

Leaf Area

The paclobutrazol application significantly (p < 0.05) influ-
enced the leaf area of the sesame plant at 45, 85, and 125 

DAS in both cultivars, except the non-significant difference, 
was observed between cultivars at 45 DAS in 2018 and 
2019, respectively. Overall, compared to control, paclobutra-
zol concentration P3 (300 mg L−1) had the greatest impact 
on the leaf area of sesame at all intervals. On average, over 
the years, in comparison to control, paclobutrazol applica-
tion P3 (300 mg L−1) decreased the leaf area of sesame by 
14% and 25% at 45 and 85 DAS, respectively. However, P3 
(300 mg L−1) treatment showed a higher leaf area by 46% 
compared to control at 125 DAS (Fig. 2). In this two-year 
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Fig. 2  Leaf area of sesame plants at 45, 85, and 125  days after sowing (DAS) in 2018 and 2019. The P0, P1, P2, and P3 represent the 
paclobutrazol treatments, Control, 100 mg  L−1, 200 mg  L−1, and 300 mg  L−1, respectively. Means are averaged over three replicates
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experiment, results suggested that leaf area development 
in sesame was directly associated with paclobutrazol 
concentrations.

Biomass Accumulation

Different paclobutrazol concentrations had a significant 
(p < 0.05) impact on total biomass accumulation (TBA) of 
sesame (Table 2). Overall, across the years, P3 (300 mg L−1) 
produced the highest biomass of sesame (388.2, 1029.8 and 
898.2 g m−2 in 2018 and 401.9, 1076.5 and 972.4 g m−2 in 
2019) than the control (323.9, 845.5 and 715.9 g m−2 in 
2018 and 346.5, 907.5 and 783.1 g m−2 in 2019) at 45, 85, 
and 125 DAS, respectively. Paclobutrazol concentration P3 
(300 mg  L−1) increased the total biomass accumulation of 
sesame plant by 20%, 16%, and 22% in 2018, and 19%, 25%, 
and 24% in 2019, at 45, 85, and 125 DAS, respectively.

Biomass Partitioning

Paclobutrazol application with various concentrations sig-
nificantly altered the biomass partitioning patterns in various 
plant organs of the sesame. Overall, in all the treatments, 
P0 depicted the lowest biomass gains in the different plant 
parts at 45, 85, and 125 DAS (Fig. 3). Seed biomass of ses-
ame at maturity was highest (137.0 and 145.9 g m−2) in P3 

(300 mg L−1) treatment and lowest (109.3 and 117.3 g m−2) 
in P0 treatment in both years, respectively. On average, 
across both years, P3 (300 mg L−1) was the only treatment 
that increased the root (by 26%, 19%, and 23%), stem (by 
16%, 17%, and 23%), and leaves (by 17%, 16%, and 34%) 
biomass at 45, 85 and 125 DAS while capsule hull (by 23% 
and 22%) and seed (by 55% and 25%) biomass at 85 and 125 
DAS respectively as compared to control.

Yield Components

Yield components of sesame were significantly affected 
by various application concentrations of paclobutrazol 
(Table 3). The number of capsules  plant−1, number of seeds 
 capsule−1, and thousand seed weight were altered consider-
ably in P3 treatment relative to other application concentra-
tions. Specifically, the mean maximum values of the number 
of capsules  plant−1 (33.0 and 33.7) and thousand seed weight 
(3.67 and 3.74 g) were observed in P3 (300 mg  L−1). In con-
trast, the maximum average seeds  capsule−1 (63.8 and 64.3) 
was observed in control during 2018 and 2019, respectively. 
Furthermore, P3 (300 mg L−1) treatment increased the num-
ber of capsules  plant−1 by 26% and 25% and thousand seed 
weight by 10% and 11% compared to control in both years, 
respectively.

Seed Yield

Sesame seed yield was significantly (p < 0.05) higher in P3 
(300 mg L−1) treatment (1379.1 and 1435.5 kg ha−1) com-
pared with P2 (1303.4 and 1384.3 kg ha−1), P1 (1208.8 and 
1263.1 kg ha−1), and P0 (1083.2 and 1141.8 kg ha−1) in 2018 
and 2019 respectively (Table 3). Importantly in paclobutra-
zol treatments, across the years, P3 (300 mg L−1) was the 
only treatment that enhanced the seed yield of sesame by 
27% and 26% in comparison with control. The seed yield 
of sesame increased linearly in response to paclobutrazol 
application (Fig. 4). Furthermore, TS-5 had a higher seed 
yield (1302.7 and 1368.7 kg ha−1) than the TS-3 (1184.5 
and 1243.6 kg ha−1) in both years. Overall, TS-5 showed 
the average greater seed yield by 10% than the TS-3 in both 
growing seasons (Table 3).

Seed Shattering Losses and Percentage

Sesame seed shattering losses were significantly reduced 
with the paclobutrazol application (Fig.  5). Among 
the paclobutrazol concentrations, sesame plants in 
P3 (300  mg  L−1) treatment had the lowest (20.50 and 
19.57 g m−2) shattering losses than the control (24.65 and 
24.02 g m−2). Paclobutrazol treatment P3 (300 mg L−1), 
decreased the shattering losses in sesame by 17% and 19% in 
2018 and 2019, respectively. Similarly, the lowest shattering 

Table 2  Effects of paclobutrazol application on total biomass accu-
mulation of sesame in 2018 and 2019

The 45 DAS, 85DAS, and 125 DAS represent the sampling intervals 
at 45 days after sowing, 85 days after sowing, and 125 days after sow-
ing, respectively. The P0, P1, P2, and P3 represent the paclobutra-
zol treatments, Control, 100 mg  L−1, 200 mg  L−1, and 300 mg  L−1, 
respectively. Means are averaged over three replicates and the means 
with a different letter in the column varied significantly at p < 0.05

Year Treatment 45 DAS 85 DAS 125 DAS

2018 Cultivar TS-5 362.4a 976.6a 849.9a
TS-3 357.0a 904.7b 777.9b

LSD 19.3 19.4 27.7
Paclobutrazol P0 323.9c 845.5d 715.9d

P1 354.9b 910.6c 790.4c
P2 371.7ab 976.8b 851.2b
P3 388.2a 1029.8a 898.2a

LSD 27.3 27.5 39.1
2019 Cultivar TS-5 377.5a 1033.5a 920.4a

TS-3 367.8a 949.3b 835.2b
LSD 14.0 30.2 32.7
Paclobutrazol P0 346.5c 907.5d 783.1d

P1 360.0c 952.0c 836.9c
P2 382.0b 1029.7b 918.7b
P3 401.9a 1076.5a 972.4a

LSD 19.8 42.6 46.2
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percentage was recorded in P3 (300 mg L−1) treatment (13.1 
and 12.2) as compared with control (18.6 and 17.5) (Fig. 6). 
However, between the cultivars, TS-5 had the lower seed 
yield losses and percentage compared to TS-3. On average, 
across the years, TS-5 had the lower seed yield losses by 2% 
and shattering percentage by 9% compared to TS-3.

Linear Regression Analysis and Normality Test

The results of linear regression analysis showed significant 
relationship between paclobutrazol application and seed 
yield of sesame (Fig. 4). The equation obtained using Sha-
piro–Wilk and Kolmogorov–Smirnov normality test was:

The coefficient of determination  (R2) of linear model 
was 0.453 while obtained adjusted  R2 was 0.441. The 
validation of model can be confirmed by the F test as pre-
sented in Table 4.

Grainyield = 1026.815 + 99.231 × paclobutrazolconcentrations

Discussion

Our findings demonstrated significant improvements in the 
leaf greenness of sesame plants under increasing paclobutra-
zol concentrations. A previous study reported that the appli-
cation of triazoles significantly increased the chlorophyll 
contents of soybean leaves by regulating the expression of 
key enzymes involved in the biosynthesis of chlorophyll (Liu 
et al. 2015). Moreover, evidence suggested that application 
of triazoles increase the chlorophyll contents, photosynthetic 
rate of leaves, and delay leaf senescence in plants (Yan et al. 
2015). Results of this study were in line with earlier studies 
where plant growth regulators especially triazoles enhanced 
the chlorophyll synthesis and delayed leaf senescence in dif-
ferent crops (Liu et al. 2015; Wang et al. 2009; Ahmad et al. 
2019).

Leaf area of sesame was significantly reduced at 
higher concentrations that indicate the growth retard-
ing effects of paclobutrazol on plants (Soumya et  al. 
2017; Pal et al. 2016). Specifically, paclobutrazol inter-
feres with gibberellic acid synthesis by impairing the 

Fig. 3  Biomass partitioning of sesame plants at 45, 85, and 125 days after sowing (DAS) in 2018 and 2019. The P0, P1, P2, and P3 represent the 
paclobutrazol treatments, Control, 100 mg  L−1, 200 mg  L−1, and 300 mg  L−1, respectively. Means are averaged over three replicates
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oxidation of ent-kaurene to ent-kauronoic acid by inactivat-
ing cytochrome P450-dependent oxygenase (Zhu et al. 2004; 
Rady and Gaballah 2012). However, at maturity, the leaf 
area was significantly higher in P3 (300 mg L−1) treatment 
linked with delayed leaf senescence and stayed green leaf 
characteristics, as paclobutrazol treated plants have darker 
green foliage and more chlorophyll content (Jiang et al. 

2019; Tesfahun 2018). It is well established that delayed leaf 
senescence could enhance the photosynthates formation and 
mobilization from leaves towards the reproductive tissues 
of the plant, which could potentially improve the seed yield 
(Feng et al. 2019; Gregersen 2011). Additionally, it could 
promote the nutrients remobilization from senescing leaves 
to developing organs (Joshi et al. 2019). Thus, optimization 
of paclobutrazol concentration can provide an opportunity 
for yield improvements due to the better source-sink rela-
tionship and delayed leaf senescence (Ahmad et al. 2019; 
Wang et al. 2009; Upadhyaya et al. 1985).

The current experiment demonstrates that the exogenous 
application of paclobutrazol significantly altered the total 
biomass accumulation and partitioning patterns in sesame. 
Moreover, our results revealed that total biomass accumu-
lation was highest in P3 (300 mg L−1) treatment than non-
treated plants. Enhanced nutrient and water translocation 
within the plants under paclobutrazol application increase 
the biomass production of plants (Kamran et  al. 2018; 
Kuai et al. 2015). Furthermore, P3 (300 mg L−1) treatment 
changed the biomass partitioning in plant organs and the 
root and seed biomass of sesame. On average, during both 
years, it increased the root and seed biomass (by 23% and 
25%, respectively) compared to control at maturity. Changes 
in biomass partitioning (especially in seeds) might be asso-
ciated with better root architecture, which enhanced that 
nutrient and water translocation in the plant (Kamran et al. 
2018). However, an increase in root biomass was inter-
linked with enhanced row formation in cortical cells due to 

Table 3  Effects of paclobutrazol 
application on yield components 
and seed yield of sesame in 
2018 and 2019

The P0, P1, P2, and P3 represent the paclobutrazol treatments, Control, 100  mg  L−1, 200  mg  L−1, and 
300 mg  L−1, respectively. Means are averaged over three replicates and the means with a different letter in 
the column varied significantly at p < 0.05

Year Treatment Number of 
capsules
(plant−1)

Number of seeds
(capsule−1)

Thousand seed 
weight
(g)

Seed yield
(kg  ha−1)

2018 Cultivar TS-5 30.8a 61.5a 3.56a 1302.7a
TS-3 29.7a 58.0b 3.47a 1184.5b

LSD 2.0 3.1 0.12 93.5
Paclobutrazol P0 26.2c 63.8a 3.33b 1083.2c

P1 29.8b 60.5ab 3.43b 1208.8bc
P2 31.8ab 57.7b 3.62a 1303.4ab
P3 33.0a 56.8b 3.67a 1379.1a

LSD 2.9 4.3 0.17 132.2
2019 Cultivar TS-5 31.7a 61.9a 3.62a 1368.7a

TS-3 30.3a 58.7b 3.52a 1243.6b
LSD 2.7 3.0 0.11 122.8
Paclobutrazol P0 27.0b 64.3a 3.38b 1141.8b

P1 30.5ab 61.0ab 3.49b 1263.1ab
P2 32.8a 58.7b 3.69a 1384.3a
P3 33.7a 57.3b 3.74a 1435.5a

LSD 3.9 4.2 0.15 173.7

Fig. 4  Linear regression analysis for paclobutrazol vs seed yield of 
sesame. The 1.0, 2.0, 3.0, and 4.0 represent the paclobutrazol treat-
ments, Control, 100 mg  L−1, 200 mg  L−1, and 300 mg  L−1, respec-
tively
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plant growth regulators (Fletcher et al. 2000; Barnes et al. 
1989; Burrows et al. 1992). Plant treatment with triazoles 
increases the root extension, radical cell expansion (Wang 
and Li 1992), and association with larger parenchyma cells 
(Fletcher et al. 2000), which results in increased root bio-
mass in comparison with non-treated plants (Qi et al. 2012; 
Kamran et al. 2018). In past reports, a similar trend was 
reported for root biomass in maize (Wan-rong et al. 2014), 
wheat (Hajihashemi et al. 2007), and soybean (Yan et al. 
2010) under the paclobutrazol application.

Seed yield differences under different levels of the 
paclobutrazol application were also evaluated in this study. 
Sesame yield increased linearly in response to the doses 

of paclobutrazol application. Seed yield of oilseed crops 
is determined by different yield contributing traits, such 
as the number of capsules, number of seeds per capsule, 
and seed weight (Wang et al. 2011). In the current study, 
different paclobutrazol levels caused significant variations 
in these yield components of sesame. It is well understood 
and reported that paclobutrazol at specific concentrations 
promotes flower initiation (Wilkinson and Richards 1987), 
flower bud formation (Blanco 1988; Kaska et al. 1991), 
and economic yield (Kuai et al. 2015; Kamran et al. 2018) 
in several plant species. Consistently, an increase in the 
number of capsules under different paclobutrazol treat-
ments in sesame may be due to the stimulation of flower 
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bud formation and flower initiation. Similarly, paclobutrazol 
increases the average fruit size in Crimson Gold (Blanco 
1988) and seed weight in canola and maize, while it has the 
tendency to reduce the seeds number per capsule at higher 
application concentrations (Kamran et al. 2018; Kuai et al. 
2015). Reduced seeds per capsule were observed under stud-
ied paclobutrazol treatments, while greatest reduction was 
recorded in P3 (300 mg L−1) treatment. However, decreased 
seeds number per capsule helped to relieve the competition 
for nutrient allocation in seeds (Nahar and Ikeda 2002), 
which consequently increased the thousand seed weight 
and seed yield in sesame. Moreover, seed yield and crop 
growth are closely linked with root architecture, because it 
determines the acquisition, uptake, and utilization of mineral 
nutrients and water (Qi et al. 2012). Hence, in rainfed farm-
ing conditions, where ample supply of water and nutrient is 
not possible, improved root architecture under paclobutrazol 
application will enhance plant access to non-uniformly dis-
tributed nutrients and water, that could increase the crops 
yield (Zhang et al. 2009; Kamran et al. 2018).

The impact of different paclobutrazol levels on shat-
tering losses was investigated, and the findings of this 
experiment demonstrated that seed shattering was sig-
nificantly reduced under P3 (300 mg L−1) treatment in 
both years. The possible increase in shattering resistance 
may be attributed to paclobutrazol effects on capsule 
maturity (Gan et al. 2008), capsule wall thickness (Child 
et al. 2003), capsule dry weight, and water content (Kuai 
et al. 2015). In past investigations, plant growth regula-
tors and different kinds of desiccants were successfully 
used to control the vegetative growth and shattering losses 
in various crops (Wiggans et al. 1956; Kuai et al. 2015). 
Metcalfe et al. (1957) reported that the water content of the 
capsule is a critical determining factor for shattering losses 
and could facilitate in improving the shattering resistance 
of the crops. However, mechanisms involved in changing 
the structure, biochemistry, and shatter resistance under 

paclobutrazol application, still lack a comprehensive 
understanding and need further investigation (Kuai et al. 
2015).

Limitations and Implications

During this study, we noted the following limitations during 
sampling and measurements. The method used to determine 
leaf area is not comprehensive and accurate because sesame 
has large leaf shape variations. Still, the equation only con-
siders a single correction factor for all of them. Therefore, 
results may not reflect the considerable variation in sesame 
leaves. Moreover, the method used for seed shattering meas-
urement was reported earlier to assess the seed shattering 
in sesame, but it also had some limitations. For instance, 
this method does not assume the variations in seed weight 
of different capsules, which can greatly vary. Additionally, 
the paclobutrazol can significantly influence the size and 
weight of capsules in the top, middle, and bottom of the 
plant. Thus, these limitations can affect the results obtained 
using these methods.

This study highlights the paclobutrazol’s effects on leaf 
greenness, leaf area, biomass accumulation and distribu-
tion, seed yield, and seed shattering. Thus, we present the 
following implications for improvement in sesame produc-
tion. Our results suggested that paclobutrazol application 
can enhance the seed yield and reduce the seed shattering in 
sesame. Additionally, these findings could also be used for 
developing the shattering resistance in sesame, which will 
favor the mechanical harvesting of sesame that will improve 
the farming system efficiency and net returns. Furthermore, 
to the best of our knowledge, this research is the first to 
report the effects of paclobutrazol application on dry matter 
accumulation, seed yield, and shatter resistance in sesame 
under rainfed conditions.

Table 4  Linear regression analysis between paclobutrazol application and seed yield of sesame using Normality Test (Shapiro–Wilk)

where DF = degree of freedom, SS = sum of squares, MS = Mean squares, Normality Test (Shapiro–Wilk): Passed (P = 0.936), Constant Vari-
ance Test: Passed (P = 0.991) and Power of performed test with alpha = 0.050: 1.000, Normality Test (Kolmogorov–Smirnov) Passed (P = 0.467), 
Constant Variance Test: Passed (P = 0.991) and Power of performed test with alpha = 0.050: 1.000

Coefficient Std. error t P

Constant 1026.815 44.049 23.311  < 0.001
Paclobutrazol 99.231 16.084 6.169  < 0.001

Analysis of Variance

DF SS MS F P

Regression 1 590,807.4 590,807.4 38.062  < 0.001
Residual 46 714,031.1 15,522.42
Total 47 1,304,839 27,762.52
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Conclusion

Our study revealed that different paclobutrazol concentra-
tions significantly impacted the leaf greenness, leaf area, 
and leaf senescence of sesame. Similarly, the total bio-
mass accumulation and partitioning of sesame significantly 
improved under the application of paclobutrazol, which ulti-
mately increased the total seed biomass. Hence, improved 
leaf greenness and leaf area may have delayed the leaf 
senescence and improved dry matter accumulation, which 
finally enhanced the sesame’s final seed yield. Moreover, 
paclobutrazol application significantly reduced the shat-
tering losses. Overall, the paclobutrazol concentration of 
300 mg L−1 produced the highest seed yield and lowest seed 
shattering. Thus, our two-year field study results suggest 
that sesame yield and shatter resistance in sesame could be 
enhanced by applying optimum paclobutrazol level.
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