22 research outputs found

    Etiology matters - genomic DNA methylation patterns in three rat models of acquired epilepsy

    Get PDF
    This study tested the hypothesis that acquired epileptogenesis is accompanied by DNA methylation changes independent of etiology. We investigated DNA methylation and gene expression in the hippocampal CA3/dentate gyrus fields at 3 months following epileptogenic injury in three experimental models of epilepsy: focal amygdala stimulation, systemic pilocarpine injection, or lateral fluid-percussion induced traumatic brain injury (TBI) in rats. In the models studies, DNA methylation and gene expression profiles distinguished controls from injured animals. We observed consistent increased methylation in gene bodies and hypomethylation at non-genic regions. We did not find a common methylation signature in all three different models and few regions common to any two models. Our data provide evidence that genome-wide alteration of DNA methylation signatures is a general pathomechanism associated with epileptogenesis and epilepsy in experimental animal models, but the broad pathophysiological differences between models (i.e. pilocarpine, amygdala stimulation, and post-TBI) are reflected in distinct etiology-dependent DNA methylation patterns

    Epilepsy therapy development: Technical and methodologic issues in studies with animal models

    No full text
    The search for new treatments for seizures, epilepsies, and their comorbidities faces considerable challenges. This is due in part to gaps in our understanding of the etiology and pathophysiology of most forms of epilepsy. An additional challenge is the difficulty in predicting the efficacy, tolerability, and impact of potential new treatments on epilepsies and comorbidities in humans, using the available resources. Herein we provide a summary of the discussions and proposals of the Working Group 2 as presented in the Joint American Epilepsy Society and International League Against Epilepsy Translational Workshop in London (September 2012). We propose methodologic and reporting practices that will enhance the uniformity, reliability, and reporting of early stage preclinical studies with animal seizure and epilepsy models that aim to develop and evaluate new therapies for seizures or epilepsies, using multidisciplinary approaches. The topics considered include the following: (1) implementation of better study design and reporting practices; (2) incorporation in the study design and analysis of covariants that may influence outcomes (including species, age, sex); (3) utilization of approaches to document target relevance, exposure, and engagement by the tested treatment; (4) utilization of clinically relevant treatment protocols; (5) optimization of the use of video-electroencephalography (EEG) recordings to best meet the study goals; and (6) inclusion of outcome measures that address the tolerability of the treatment or study end points apart from seizures. We further discuss the different expectations for studies aiming to meet regulatory requirements to obtain approval for clinical testing in humans. Implementation of the rigorous practices discussed in this report will require considerable investment in time, funds, and other research resources, which may create challenges for academic researchers seeking to contribute to epilepsy therapy discovery and development. We propose several infrastructure initiatives to overcome these barriers
    corecore