36 research outputs found

    Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity

    Get PDF
    Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 - 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration

    Standing dead trees are a conduit for the atmospheric flux of CH4 and CO2 from wetlands

    Get PDF
    In vegetated wetland ecosystems, plants can be a dominant pathway in the atmospheric flux of methane, a potent greenhouse gas. Although the roles of herbaceous vegetation and live woody vegetation in this flux have been established, the role of dead woody vegetation is not yet known. In a restored wetland of North Carolina’s coastal plain, static flux chambers were deployed at two heights on standing dead trees to determine if these structures acted as a conduit for methane emissions. Methane fluxes to the atmosphere were measured in five of the chambers, with a mean flux of 0.4±0.1 mg m-2 h-1. Methane consumption was also measured in three of the chambers, with a mean flux of -0.6±0.3 mg m-2 h-1. Standing dead trees were also a source of the flux of CO2 (114.6±23.8 mg m-2 h-1) to the atmosphere. Results confirm that standing dead trees represent a conduit for the atmospheric flux of carbon gases from wetlands. However, several questions remain regarding the ultimate source of these carbon gases, the controls on the magnitude and direction of this flux, the mechanisms that induce this flux, and the importance of this pathway relative to other sources at the landscape level

    The Lotic Intersite Nitrogen Experiments: an example of successful ecological research collaboration

    Get PDF
    Collaboration is an essential skill for modern ecologists because it brings together diverse expertise, viewpoints, and study systems. The Lotic Intersite Nitrogen eXperiments (LINX I and II), a 17-y research endeavor involving scores of early- to late-career stream ecologists, is an example of the benefits, challenges, and approaches of successful collaborative research in ecology. The scientific success of LINX reflected tangible attributes including clear scientific goals (hypothesis-driven research), coordinated research methods, a team of cooperative scientists, excellent leadership, extensive communication, and a philosophy of respect for input from all collaborators. Intangible aspects of the collaboration included camaraderie and strong team chemistry. LINX further benefited from being part of a discipline in which collaboration is a tradition, clear data-sharing and authorship guidelines, an approach that melded field experiments and modeling, and a shared collaborative goal in the form of a universal commitment to see the project and resulting data products through to completion

    Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 × 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration

    Scaling Flow Path Processes to Fluvial Landscapes: An Integrated Field and Model Assessment of Temperature and Dissolved Oxygen Dynamics in a River-Floodplain-Aquifer System

    Get PDF
    Biogeochemical cycling within river ecosystems is strongly influenced by geomorphic and hydrologic dynamics. To scale point observations of temperature and dissolved oxygen (DO) to a hydrologically complex and dynamic three-dimensional river-floodplain-aquifer system, we integrated empirical models of temperature and biotic oxygen utilization with a recently published hydrogeomorphic model. The hydrogeomorphic model simulates channel flow, floodplain inundation, and surface-subsurface water exchange on the 16 km(2) Nyack Floodplain, Middle Fork Flathead River, Montana, USA. Model results were compared to observed data sets of DO to test the hypothesis that complexity in spatiotemporal patterns of biogeochemistry emerges from a comparatively simple representation of biogeochemical processes operating within a multidimensional hydrologic system. The model explained 58% of the variance in 820 DO measurements that spanned the study site longitudinally, laterally, vertically, and across river discharge conditions and seasons. We also used model results to illustrate spatial and temporal trends of temperature and DO dynamics within the shallow alluvial aquifer, which is an extensive hyporheic zone because subsurface alluvial flow paths are recharged primarily by channel water. Our results underscore the importance of geomorphic, hydrologic, and temperature dynamics in driving river ecosystem processes, and they demonstrate how a realistic representation of a river\u27s physical template, combined with simple biogeochemical models, can explain complex patterns of solute availability

    Emergent productivity regimes of river networks

    Get PDF
    High-resolution data are improving our ability to resolve temporal patterns and controls on river productivity, but we still know little about the emergent patterns of primary production at river-network scales. Here, we estimate daily and annual river-network gross primary production (GPP) by applying characteristic temporal patterns of GPP (i.e., regimes) representing distinct river functional types to simulated river networks. A defined envelope of possible productivity regimes emerges at the network-scale, but the amount and timing of network GPP can vary widely within this range depending on watershed size, productivity in larger rivers, and reach-scale variation in light within headwater streams. Larger rivers become more influential on network-scale GPP as watershed size increases, but small streams with relatively low productivity disproportionately influence network GPP due to their large collective surface area. Our initial predictions of network-scale productivity provide mechanistic understanding of the factors that shape aquatic ecosystem function at broad scales

    Light and flow regimes regulate the metabolism of rivers

    Get PDF
    Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.We thank Ted Stets, Jordan Read, Tom Battin, Sophia Bonjour, Marina Palta, and members of the Duke River Center for their help in developing these ideas. This work was supported by grants from the NSF 1442439 (to E.S.B. and J.W.H.), 1834679 (to R.O.H.), 1442451 (to R.O.H.), 2019528 (to R.O.H. and J.R.B.), 1442140 (to M.C.), 1442451 (to A.M.H.), 1442467 (to E.H.S.), 1442522 (to N.B.G.), 1624807 (to N.B.G.), and US Geological Survey funding for the working group was supported by the John Wesley Power Center for Analysis and Synthesis. Phil Savoy contributed as a postdoc- toral associate at Duke University and as a postdoctoral associate (contractor) at the US Geological Survey

    Gradients of anthropogenic nutrient enrichment alter N Composition and DOM stoichiometry in freshwater ecosystems

    Get PDF
    Plain language summary Ammonium and nitrate in freshwaters have received considerable attention due to their clear ecological and health effects. A comprehensive assessment of N in freshwaters that includes DON is lacking. Including DON in studies of surface water chemistry is important because it can cause eutrophication and certain forms can be rapidly removed by microbial communities. Here, we document how elevated levels of TDN impact the concentrations and relative proportions of all three forms of dissolved N and the stoichiometry of DOM. Our results suggest that human activities fundamentally alter the composition of the dissolved nitrogen pool and the stoichiometry of DOM. Results also highlight feedbacks between the C and N cycles in freshwater ecosystems that are poorly studied.A comprehensive cross-biome assessment of major nitrogen (N) species that includes dissolved organic N (DON) is central to understanding interactions between inorganic nutrients and organic matter in running waters. Here, we synthesize stream water N chemistry across biomes and find that the composition of the dissolved N pool shifts from highly heterogeneous to primarily comprised of inorganic N, in tandem with dissolved organic matter (DOM) becoming more N-rich, in response to nutrient enrichment from human disturbances. We identify two critical thresholds of total dissolved N (TDN) concentrations where the proportions of organic and inorganic N shift. With low TDN concentrations (0–1.3 mg/L N), the dominant form of N is highly variable, and DON ranges from 0% to 100% of TDN. At TDN concentrations above 2.8 mg/L, inorganic N dominates the N pool and DON rarely exceeds 25% of TDN. This transition to inorganic N dominance coincides with a shift in the stoichiometry of the DOM pool, where DOM becomes progressively enriched in N and DON concentrations are less tightly associated with concentrations of dissolved organic carbon (DOC). This shift in DOM stoichiometry (defined as DOC:DON ratios) suggests that fundamental changes in the biogeochemical cycles of C and N in freshwater ecosystems are occurring across the globe as human activity alters inorganic N and DOM sources and availability. Alterations to DOM stoichiometry are likely to have important implications for both the fate of DOM and its role as a source of N as it is transported downstream to the coastal ocean

    Thinking outside the channel : modeling nitrogen cycling in networked river ecosystems

    Get PDF
    Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 9 (2011): 229–238, doi:10.1890/080211.Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify important components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial–aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.This research was supported by NSF (DEB-0111410). Additional support was provided by NSF for BJP and SMT (DEB-0614301), for WMW (OCE-9726921 and DEB-0614282), for WHM and JDP (DEB-0620919), for SKH (DEB-0423627), and by the Gordon and Betty Moore Foundation for AMH, GCP, ESB, and JAS, and by an EPA Star Fellowship for AMH

    Stream denitrification across biomes and its response to anthropogenic nitrate loading

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 452 (2008): 202-205, doi:10.1038/nature06686.Worldwide, anthropogenic addition of bioavailable nitrogen (N) to the biosphere is increasing and terrestrial ecosystems are becoming increasingly N saturated, causing more bioavailable N to enter groundwater and surface waters. Large-scale N budgets show that an average of about 20-25% of the N added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for N must exist in the landscape. Streams and rivers may be important sinks for bioavailable N owing to their hydrologic connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favor microbial denitrification. Here, using data from 15N tracer experiments replicated across 72 streams and 8 regions representing several biomes, we show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of instream nitrate that is removed from transport. Total uptake of nitrate was related to ecosystem photosynthesis and denitrification was related to ecosystem respiration. Additionally, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.Funding for this research was provided by the National Science Foundation
    corecore