780 research outputs found

    The discrepancy in G-band contrast: Where is the quiet Sun?

    Full text link
    We compare the rms contrast in observed speckle reconstructed G-band images with synthetic filtergrams computed from two magneto-hydrodynamic simulation snapshots. The observations consist of 103 bursts of 80 frames each taken at the Dunn Solar Telescope (DST), sampled at twice the diffraction limit of the telescope. The speckle reconstructions account for the performance of the Adaptive Optics (AO) system at the DST to supply reliable photometry. We find a considerable discrepancy in the observed rms contrast of 14.1% for the best reconstructed images, and the synthetic rms contrast of 21.5% in a simulation snapshot thought to be representative of the quiet Sun. The areas of features in the synthetic filtergrams that have positive or negative contrast beyond the minimum and maximum values in the reconstructed images have spatial scales that should be resolved. This leads us to conclude that there are fundamental differences in the rms G-band contrast between observed and computed filtergrams. On the basis of the substantially reduced granular contrast of 16.3% in the synthetic plage filtergram we speculate that the quiet-Sun may contain more weak magnetic field than previously thought.Comment: 16 pages, 8 figure

    Theory and Modeling of the Zeeman and Paschen-Back effects in Molecular Lines

    Full text link
    This paper describes a very general approach to the calculation of the Zeeman splitting effect produced by an external magnetic field on the rotational levels of diatomic molecules. The method is valid for arbitrary values of the total electronic spin and of the magnetic field strength -that is, it holds for molecular electronic states of any multiplicity and for both the Zeeman and incomplete Paschen-Back regimes. It is based on an efficient numerical diagonalization of the effective Zeeman Hamiltonian, which can incorporate easily all the contributions one may eventually be interested in, such as the hyperfine interaction of the external magnetic field with the spin motions of the nuclei. The reliability of the method is demonstrated by comparing our results with previous ones obtained via formulae valid only for doublet states. We also present results for molecular transitions arising between non-doublet electronic states, illustrating that their Zeeman patterns show signatures produced by the Paschen-Back effect.Comment: 35 pages, 11 figures, accepted for publication in Ap

    A near-IR line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere

    Get PDF
    We report on spectropolarimetric observations of a near-IR line of Mn I located at 15262.702 A whose intensity and polarization profiles are very sensitive to the presence of hyperfine structure. A theoretical investigation of the magnetic sensitivity of this line to the magnetic field uncovers several interesting properties. The most important one is that the presence of strong Paschen-Back perturbations due to the hyperfine structure produces an intensity line profile whose shape changes according to the absolute value of the magnetic field strength. A line ratio technique is developed from the intrinsic variations of the line profile. This line ratio technique is applied to spectropolarimetric observations of the quiet solar photosphere in order to explore the probability distribution function of the magnetic field strength. Particular attention is given to the quietest area of the observed field of view, which was encircled by an enhanced network region. A detailed theoretical investigation shows that the inferred distribution yields information on the average magnetic field strength and the spatial scale at which the magnetic field is organized. A first estimation gives ~250 G for the mean field strength and a tentative value of ~0.45" for the spatial scale at which the observed magnetic field is horizontally organized.Comment: 42 pages, 17 figures, accepted for publication in the Astrophysical Journal. Figures 1 and 9 are in JPG forma

    Hanle effect in the CN violet system with LTE modeling

    Full text link
    Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible through the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN B2Σ−X2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN B2Σ−X2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic

    Modelling the molecular Zeeman effect in M-dwarfs: methods and first results

    Full text link
    We present first quantitative results of the surface magnetic field measurements in selected M-dwarfs based on detailed spectra synthesis conducted simultaneously in atomic and molecular lines of the FeH Wing-Ford F4 Δ−X4 ΔF^4\,\Delta-X^4\,\Delta transitions. A modified version of the Molecular Zeeman Library (MZL) was used to compute Land\'e g-factors for FeH lines in different Hund's cases. Magnetic spectra synthesis was performed with the Synmast code. We show that the implementation of different Hund's case for FeH states depending on their quantum numbers allows us to achieve a good fit to the majority of lines in a sunspot spectrum in an automatic regime. Strong magnetic fields are confirmed via the modelling of atomic and FeH lines for three M-dwarfs YZ~CMi, EV~Lac, and AD~Leo, but their mean intensities are found to be systematically lower than previously reported. A much weaker field (1.7−21.7-2~kG against 2.72.7~kG) is required to fit FeH lines in the spectra of GJ~1224. Our method allows us to measure average magnetic fields in very low-mass stars from polarized radiative transfer. The obtained results indicate that the fields reported in earlier works were probably overestimated by about 15−3015-30\%. Higher quality observations are needed for more definite results.Comment: Accepted by A&A, 13 pages, 7 figures, 1 tabl

    Plot size matters: Toward comparable species richness estimates across plot-based inventories

    Get PDF
    To understand the state and trends in biodiversity beyond the scope of monitoring programs, biodiversity indicators must be comparable across inventories. Species richness (SR) is one of the most widely used biodiversity indicators. However, as SR increases with the size of the area sampled, inventories using different plot sizes are hardly comparable. This study aims at producing a methodological framework that enables SR comparisons across plot-based inventories with differing plot sizes. We used National Forest Inventory (NFI) data from Norway, Slovakia, Spain, and Switzerland to build sample-based rarefaction curves by randomly incrementally aggregating plots, representing the relationship between SR and sampled area. As aggregated plots can be far apart and subject to different environmental conditions, we estimated the amount of environmental heterogeneity (EH) introduced in the aggregation process. By correcting for this EH, we produced adjusted rarefaction curves mimicking the sampling of environmentally homogeneous forest stands, thus reducing the effect of plot size and enabling reliable SR comparisons between inventories. Models were built using the Conway–Maxell–Poisson distribution to account for the underdispersed SR data. Our method successfully corrected for the EH introduced during the aggregation process in all countries, with better performances in Norway and Switzerland. We further found that SR comparisons across countries based on the country-specific NFI plot sizes are misleading, and that our approach offers an opportunity to harmonize pan-European SR monitoring. Our method provides reliable and comparable SR estimates for inventories that use different plot sizes. Our approach can be applied to any plot-based inventory and count data other than SR, thus allowing a more comprehensive assessment of biodiversity across various scales and ecosystems.publishedVersio

    In pancreatic ductal adenocarcinoma blood concentrations of some organochlorine compounds and coffee intake are independently associated with KRAS mutations

    Get PDF
    8 pages, 4 pages.-- PMID: 19797353 [PubMed].-- Printed version published Nov 2009.While KRAS activation is a fundamental initiating event in the aetiopathogenesis of pancreatic ductal adenocarcinoma (PDA), environmental factors influencing the occurrence and persistence of KRAS mutations remain largely unknown. The objective was to test the hypothesis that in PDA there are aetiopathogenic relationships among concentrations of some organochlorine compounds (OCs) and the mutational status of the KRAS oncogene, as well as among the latter and coffee intake. Incident cases of PDA were interviewed and had blood drawn at hospital admission (N = 103). OCs were measured by high-resolution gas chromatography with electron capture detection. Cases whose tumours harboured a KRAS mutation had higher concentrations of p,p′-dichlorodiphenyltrichloroethane (DDT), p,p′-dichlorodiphenyldichloroethene (DDE) and polychlorinated biphenyls (PCBs) 138, 153 and 180 than cases with wild-type KRAS, but differences were statistically significant only for p,p′-DDT and PCBs 138 and 153. The association between coffee intake and KRAS mutations remained significant (P-trend < 0.015) when most OCs where accounted for. When p,p′-DDT, PCB 153, coffee and alcohol intake were included in the same model, all were associated with KRAS (P = 0.042, 0.007, 0.016 and 0.025, respectively). p,p′-DDT, p,p′-DDE and PCB 138 were significantly associated with the two most prevalent KRAS mutations (Val and Asp). OCs and coffee may have independent roles in the aetiopathogenesis of PDA through modulation of KRAS activation, acquisition or persistence, plausibly through non-genotoxic or epigenetic mechanisms. Given that KRAS mutations are the most frequent abnormality of oncogenes in human cancers, and the lifelong accumulation of OCs in humans, refutation or replication of the findings is required before any implications are assessed.Government of Catalonia (2009 SGR 1350); ‘Red temática de investigación cooperativa de centros en Cáncer’ (C03/10); ‘Red temática de investigación cooperativa de centros en Epidemiología y salud pública’ (C03/09); CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Government of Spain.Peer reviewe

    Upholding the unified model for Active Galactic Nuclei: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    Get PDF
    The origin of the unification model for Active Galactic Nuclei (AGN) was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ?30–40% of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, four classified as NHBLR, and five as HBLR based on previous data. We report ?4? detections of a HBLR in 11 of these galaxies (73% of the sample) and a tentative detection in NGC 5793, which is Compton-thick according to the analysis of X-ray data performed here. Our results confirm that at least some NHBLRs are misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad H? and H? components in polarized light for 10 targets, and just broad H? for NGC 5793 and NGC 6300, with line widths ranging between 2100 and 9600 km s?1. High bolometric luminosities and low column densities are associated with higher polarization degrees, but not necessarily with the detection of the scattered broad components

    G-band Spectral Synthesis in Solar Magnetic Concentrations

    Get PDF
    Narrow band imaging in the G-band is commonly used to trace the small magnetic field concentrations of the Sun, although the mechanism that makes them bright has remained unclear. We carry out LTE syntheses of the G-band in an assorted set of semi-empirical model magnetic concentrations. The syntheses include all CH lines as well as the main atomic lines within the band-pass. The model atmospheres produce bright G-band spectra having many properties in common with the observed G-band bright points. In particular, the contrast referred to the quiet Sun is about twice the contrast in continuum wavelengths. The agreement with observations does not depend on the specificities of the model atmosphere, rather it holds from single fluxtubes to MIcro-Structured Magnetic Atmospheres. However, the agreement requires that the real G-band bright points are not spatially resolved, even in the best observations. Since the predicted G-band intensities exceed by far the observed values, we foresee a notable increase of contrast of the G-band images upon improvement of the angular resolution. According to the LTE modeling, the G-band spectrum emerges from the deep photosphere that produces the continuum. Our syntheses also predict solar magnetic concentrations showing up in continuum images but not in the G-band . Finally, we have examined the importance of the CH photo-dissociation in setting the amount of G-band absorption. It turns out to play a minor role.Comment: To appear in ApJ, 554 n2 Jun 20, 33 pages and 9 figure
    • …
    corecore