12 research outputs found

    Fungal Endophytes Directly Increase the Competitive Effects of an Invasive Forb

    Get PDF
    Competitive outcomes among plants can vary in different abiotic and biotic conditions. Here we tested the effects of two phylotypes of Alternaria endophytes on the growth, competitive effects, and competitive responses of the exotic invasive forb Centaurea stoebe. Centaurea stoebe was a better competitor against North American grass species than grasses from its European home range in the absence of endophytes. However, one endophyte both increased the biomass of C. stoebe and reduced the competitive effect of North American grasses on C. stoebe. The competitive effects of C. stoebe on grass species native to North America were enhanced by both fungal endophytes, but not for native European grasses. We do not know the mechanism by which endophytes increased C. stoebe\u27s competitive ability, and particularly against biogeographically new neighbors, but one endophyte increased the competitive ability of C. stoebe without increasing its size, suggesting mechanisms unrelated to increased growth. We tested only a fraction of the different endophytic fungi that have been found in C. stoebe, only scratching the surface of understanding their indirect effects. However, our results are the first to demonstrate such effects of a fungal endophyte infecting an invasive forb, and one of the few to show that endophyte effects on competition do not have to be mediated through herbivory

    Inhibitory effects of Eucalyptus globulus on understorey plant growth and species richness are greater in non-native regions

    Get PDF
    Aim: We studied the novel weapons hypothesis in the context of the broadly distributed tree species Eucalyptus globulus. We evaluated the hypothesis that this Australian species would produce stronger inhibitory effects on species from its non-native range than on species from its native range. Location: We worked in four countries where this species is exotic (U.S.A., Chile, India, Portugal) and one country where it is native (Australia). Time period: 2009–2012. Major taxa studied: Plants. Methods: We compared species composition, richness and height of plant communities in 20 paired plots underneath E. globulus individuals and open areas in two sites within its native range and each non-native region. We also compared effects of litter leachates of E. globulus on root growth of seedlings in species from Australia, Chile, the U.S.A. and India. Results: In all sites and countries, the plant community under E. globulus canopies had lower species richness than did the plant community in open areas. However, the reduction was much greater in the non-native ranges: species richness declined by an average of 51% in the eight non-native sites versus 8% in the two native Australian sites. The root growth of 15 out of 21 species from the non-native range were highly suppressed by E. globulus litter leachates, whereas the effect of litter leachate varied from facilitation to suppression for six species native to Australia. The mean reduction in root growth for Australian plants was significantly lower than for plants from the U.S.A., Chile and India. Main conclusions: Our results show biogeographical differences in the impact of an exotic species on understorey plant communities. Consistent with the novel weapons hypothesis, our findings suggest that different adaptations of species from the native and non-native ranges to biochemical compounds produced by an exotic species may play a role in these biogeographical differences.NSF EPSCoR Track-1, Grant/Award Number: EPS-1101342; Australian Research Council, Grant/Award Number: DE12010222

    Raw individual biomass data

    No full text
    Raw individual biomass dat

    Data from: Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence

    No full text
    A fundamental assumption of coexistence theory is that competition inevitably decreases species diversity. Consequently, in the quest to understand the ecological regulators of diversity, there has been a great deal of focus on processes with the potential to reduce competitive exclusion. However, the notion that competition must decrease diversity is largely based on the outcome of two-species interaction experiments and models, despite the fact that species rarely interact only in pairs in natural systems. In a field experiment, we found that competition among native perennial plants in multispecies assemblages was far weaker than competition between those same species in pairwise arrangements and that indirect interactions appeared to weaken direct competitive effects. These results suggest that community assembly theory based on pairwise approaches may overestimate the strength of competition and likelihood of competitive exclusion in species-rich communities. We also found that Centaurea stoebe, a North American invader, retained strong competitive effects when competing against North American natives in both pairwise and multispecies assemblages. Our experimental results support an emerging body of theory suggesting that complex networks of competing species may generate strong indirect interactions that can maintain diversity and that ecological differentiation may not be necessary to attenuate competition

    Appendix A. Detailed results of two-way ANOVA model and figure of reproductive output results.

    No full text
    Detailed results of two-way ANOVA model and figure of reproductive output results

    Appendix A. Detailed results of all statistical tests, means and confidence intervals or standard error, and figure showing vegetation response to restoration treatments.

    No full text
    Detailed results of all statistical tests, means and confidence intervals or standard error, and figure showing vegetation response to restoration treatments

    Inhibitory effects of Eucalyptus globulus on understorey plant growth and species richness are greater in non-native regions

    No full text
    Aim: We studied the novel weapons hypothesis in the context of the broadly distributed tree species Eucalyptus globulus. We evaluated the hypothesis that this Australian species would produce stronger inhibitory effects on species from its non‐native range than on species from its native range. Location: We worked in four countries where this species is exotic (U.S.A., Chile, India, Portugal) and one country where it is native (Australia). Time period: 2009–2012. Major taxa studied: Plants. Methods: We compared species composition, richness and height of plant communities in 20 paired plots underneath E. globulus individuals and open areas in two sites within its native range and each non‐native region. We also compared effects of litter leachates of E. globulus on root growth of seedlings in species from Australia, Chile, the U.S.A. and India. Results: In all sites and countries, the plant community under E. globulus canopies had lower species richness than did the plant community in open areas. However, the reduction was much greater in the non‐native ranges: species richness declined by an average of 51% in the eight non‐native sites versus 8% in the two native Australian sites. The root growth of 15 out of 21 species from the non‐native range were highly suppressed by E. globulus litter leachates, whereas the effect of litter leachate varied from facilitation to suppression for six species native to Australia. The mean reduction in root growth for Australian plants was significantly lower than for plants from the U.S.A., Chile and India. Main conclusions: Our results show biogeographical differences in the impact of an exotic species on understorey plant communities. Consistent with the novel weapons hypothesis, our findings suggest that different adaptations of species from the native and non‐native ranges to biochemical compounds produced by an exotic species may play a role in these biogeographical differences
    corecore