235 research outputs found

    Chain elongation suppression of cyclic block copolymers in lamellar microphase-separated bulk

    Get PDF
    Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating lamellar structure and their microdomain spacing D increases with increasing total molecular weight M according to the relationship Dproportional toM(0.59), which agrees quite consistently with the theoretically predicted power law, i.e., Dproportional toM(3/5). This result is in contrast to the well-established issue for linear block copolymers, where the relationship Dproportional toM(2/3) has been confirmed to hold both experimentally and theoretically. This means that chain elongation of each component block is suppressed considerably, owing to their looped conformation in strongly segregated bulk. (C) 2004 American Institute of Physics.</p

    Star formation histories and evolution of 35 brightest E+A galaxies from SDSS DR5

    Full text link
    We pick out the 35 brightest galaxies from Goto's E+A galaxies catalogue which are selected from the Sloan Digital Sky Survey Data Release 5. The spectra of E+As are prominently characterized by the strong Balmer absorption lines but little [Oii] or H_alpha emission lines. In this work we study the stellar populations of the sample galaxies by fitting their spectra using ULySS, which is a robust full spectrum fitting method. We fit each of the sample with 1-population (a single stellar population-a SSP) and 3-population (3 SSPs) models, separately. By 1-population fits, we obtain SSP-equivalent ages and metallicities which correspond to the `luminosity-weighted' averages. By 3-population fits, we divide components into three groups in age (old stellar population-OSP, intermediate-age stellar population-ISP, and young stellar population-YSP), and then get the optimal age, metallicity and population fractions in both mass and light for OSP, ISP and YSP. During the fits, both Pegase.HR/Elodie3.1 and Vazdekis/Miles are used as two independent population models. The two models result in generally consistent conclusions as follows: for all the sample galaxies, YSPs (< 1Gyr) make important contributions to the light. However, the dominant contributors to mass are OSPs. We also reconstruct the smoothing star formation histories (SFHs) by giving star formation rate (SFR) versus evolutionary age. In addition, we fit the E+A sample and 34 randomly selected elliptical galaxies with 2-population (2 SSPs) model. We obtain the equivalent age of old components for each of the E+A sample and elliptical galaxies. By comparison, the old components of E+As are statistically much younger than those of ellipticals. From the standpoint of the stellar population age, this probably provides an evidence for the proposed evolutionary link from E+As to early-types (E/S0s).Comment: 16 pages, 9 figures, Accepted for publication on MNRA

    Less than the sum of its parts : the dust-corrected Hα luminosity of star-forming galaxies explored at different spatial resolutions with MaNGA and MUSE

    Get PDF
    Funding: NVA would like to thank the University of St Andrews for providing support during her visit. NVA acknowledges support of the Royal Society and the Newton Fund via the award of a Royal Society–Newton Advanced Fellowship (grant NAF\R1\180403), and of Fundação de Amparo à Pesquisa e Inovação de Santa Catarina (FAPESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). AW acknowledges financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2019/01768-6. MG receives funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovative programme (MagneticYSOs programme, grant agreement Nber 679937). EWP, RSK, SR, SCOG and DR acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Collaborative Research Center (SFB 881) ‘The Milky Way System (subprojects A1, B1, and B2) and from the Heidelberg Cluster of Excellence STRUCTURES in the framework of Germany’s Excellence Strategy (grant EXC-2181/1- 390900948).The Hα and Hβ emission line luminosities measured in a single integrated spectrum are affected in non-trivial ways by point-to-point variations in dust attenuation in a galaxy. This work investigates the impact of this variation when estimating global Hα luminosities corrected for the presence of dust by a global Balmer decrement. Analytical arguments show that the dust-corrected Hα luminosity is always underestimated when using the global Hα/Hβ flux ratio to correct for dust attenuation. We measure this effect on 156 face-on star-forming galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey. At 1–2 kpc spatial resolution, the effect is small but systematic, with the integrated dust-corrected Hα luminosity underestimated by 2–4 per cent (and typically not more than by 10 per cent), and depends on the specific star formation rate of the galaxy. Given the spatial resolution of MaNGA, these are lower limits for the effect. From Multi Unit Spectroscopic Explorer (MUSE) observations of NGC 628 with a resolution of 36 pc we find the discrepancy between the globally and the point-by-point dust-corrected Hα luminosity to be 14 ± 1 per cent, which may still underestimate the true effect. We use toy models and simulations to show that the true difference depends strongly on the spatial variance of the Hα/Hβ flux ratio, and on the slope of the relation between Hα luminosity and dust attenuation within a galaxy. Larger samples of higher spatial resolution observations are required to quantify the dependence of this effect as a function of galaxy properties.PostprintPeer reviewe

    Gas Emission Spectrum in the Irr Galaxy IC 10

    Full text link
    Spectroscopic long-slit observations of the dwarf Irr galaxy IC 10 were conducted at the 6-m Special Astrophysical Observatory telescope with the SCORPIO focal reducer. The ionized-gas emission spectra in the regions of intense current star formation were obtained for a large number of regions in IC 10. The relative abundances of oxygen, N+, and S+ in about twenty HII regions and in the synchrotron superbubble were estimated. We found that the galaxy-averaged oxygen abundance is 12 + log(O/H) = 8.17 +- 0.35 and the metallicity is Z = 0.18 +- 0.14 Z_sun. Our abundances estimated from the strong emission lines are found to be more reliable than those obtained by comparing diagnostic diagrams with photoionization models.Comment: Abridged; accepted in Astronomy Letter

    Development of wide range photon detection system for muonic X-ray spectroscopy

    Full text link
    We have developed a photon detection system for muonic X-ray spectroscopy. The detector system consists of high-purity germanium detectors with BGO Compton suppressors. The signals from the detectors are readout with a digital acquisition system. The absolute energy accuracy, energy and timing resolutions, photo-peak efficiency, the performance of the Compton suppressor, and high count rate durability are studied with standard γ\gamma-ray sources and in-beam experiment using 27Al(p,γ)28Si^{27}\mathrm{Al}(p, \gamma){}^{28}\mathrm{Si} resonance reaction. The detection system was demonstrated at Paul Scherrer Institute. A calibration method for a photon detector at a muon facility using muonic X-rays of 197^{197}Au and 209^{209}Bi is proposed

    Images IV: Strong evolution of the oxygen abundance in gaseous phases of intermediate mass galaxies since z=0.8

    Full text link
    Intermediate mass galaxies (logM(Msun)>10) at z~0.6 are the likeliest progenitors of the present-day numerous population of spirals. There is growing evidence that they have evolved rapidly since the last 6 to 8 Gyr ago, and likely have formed a significant fraction of their stellar mass, often showing perturbed morphologies and kinematics. We have gathered a representative sample of 88 such galaxies and have provided robust estimates of their gas phase metallicity. For doing so, we have used moderate spectral resolution spectroscopy at VLT/FORS2 with unprecedented high S/N allowing to remove biases coming from interstellar absorption lines and extinction to establish robust values of R23=([OII]3727 + [OIII]4959,5007)/Hbeta. We definitively confirm that the predominant population of z~0.6 starbursts and luminous IR galaxies (LIRGs) are on average, two times less metal rich than the local galaxies at a given stellar mass. We do find that the metal abundance of the gaseous phase of galaxies is evolving linearly with time, from z=1 to z=0 and after comparing with other studies, from z=3 to z=0. Combining our results with the reported evolution of the Tully Fisher relation, we do find that such an evolution requires that ~30% of the stellar mass of local galaxies have been formed through an external supply of gas, thus excluding the close box model. Distant starbursts & LIRGs have properties (metal abundance, star formation efficiency & morphologies) similar to those of local LIRGs. Their underlying physics is likely dominated by gas infall probably through merging or interactions. Our study further supports the rapid evolution of z~0.4-1 galaxies. Gas exchanges between galaxies is likely the main cause of this evolution.Comment: 21 pages, 12 figures, A&A, In pres

    Development of a digital zenith telescope for advanced astrometry

    Get PDF
    Like other optical astrometric techniques, the Photographic Zenith Tube (PZT) has played a key role in the past observations of the Earth rotation, and it also has a potential to be applied to several other observations by taking advantage of automatic observations with self compensation of tilt of the tube. We here propose In-situ Lunar Orientation Measurement (ILOM) to study lunar rotational dynamics by direct observations of the lunar rotation from the lunar surface by using a small telescope like PZT with an accuracy of 1 milli-seconds of arc (1 mas) in the post-SELENE mission. Our second application is to obtain local gravity field on the Earth by combining deflection of the vertical measured by PZT and the position measured by Global Positioning System (GPS) or Global Navigation Satellite System (GNSS). The accuracy required for this purpose is not as strict as ILOM. We have already developed a Bread Board Model (BBM) of the telescope for ILOM and made some experiments in order to know the performance of the driving mechanism under a similar condition to the lunar environment showing high vacuum, large temperature change and dusty condition. We have also shown that it is possible to correct the effects of uniform temperature change upon the optical system by using a simple model with an accuracy of better than 1 mas. This model has the potential to attain the accuracy of 1 mas, based on the results of the experiments and the simulations. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg

    Development of a small telescope like PZT and effects of vibrations of mercury surface and ground noise

    Get PDF
    © 2017, Pleiades Publishing, Ltd. A PZT type telescope for observations of gravity gradient and lunar rotation was developed, and a Bread Board Model (BBM) for ground experiments was completed. Some developments were made for the BBM such as a tripod with attitude control system, a stable mercury pool and a method for collecting the effects of vibrations. Laboratory experiments and field observations were performed from August to September of 2014, in order to check the entire system of the telescope and the software, and the results were compared to the centroid experiments which pursue the best accuracy of determination of the center of star images with a simple optical system. It was also investigated how the vibrations of mercury surface affect the centroid position on Charge Coupled Device (CCD). The results of the experiments showed that the effects of vibrations are almost common to stars in the same view, and they can be corrected by removing mean variation of the stars; and that the vibration of mercury surface can cause errors in centroid as large as 0.2 arcsec; and that there is a strong correlation between the Standard Deviation (SD) of variation of the centroid position and signal to noise ratio (SNR) of star images. It is likely that the accuracy of one (1) milli arcsecond is possible if SNR is high enough and the effects of vibrations are corrected
    • …
    corecore