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Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was
determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating
lamellar structure and their microdomain spacingD increases with increasing total molecular weight
M according to the relationshipD}M0.59, which agrees quite consistently with the theoretically
predicted power law, i.e.,D}M3/5. This result is in contrast to the well-established issue for linear
block copolymers, where the relationshipD}M2/3 has been confirmed to hold both experimentally
and theoretically. This means that chain elongation of each component block is suppressed
considerably, owing to their looped conformation in strongly segregated bulk. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1760514#

Block copolymers are fascinating research objectives in
both the academic field and the application one, since they
exhibit novel properties in condensed systems resulting
from forming self-organized periodic structures, called
microphase-separated structures.

Cyclic macromolecules have attracted many researchers’
interest since they are conceived to be a kind of ‘‘model’’
polymers with no chain ends, so that it may influence on
several properties of polymers considerably. Historically,
theoretical works predicted the contracted chain conforma-
tion of cyclic molecules compared to linear homologs prior
to experimental works.1–3 Later Douglas and Freed predicted
possible contraction in dilute solutions by applying renor-
malization group theory to cyclic molecules,4 while Cates
and Deutsch predicted suppression of chain dimension of
cyclic molecule in bulk.5 Furthermore, Marko predicted con-
traction of lamellar microdomain thickness for a ring-shaped
block copolymer.6 On the other hand, enormous efforts have
been dedicated to preparation and characterization of cyclic
homopolymer molecules7–17 and also of cyclic block
copolymers.18–21

Throughout these experimental studies, however, the di-
rect evidence of cyclic structure was not shown; moreover,
the purity of the cyclic molecules has not been determined
quantitatively in most of the works. Among them, Ohtani
et al. have proved the cyclic structure directly by using
poly~2-vinylpyridine! with detectable junction point by py-
rolysis gas chromatography/mass spectroscopy and deter-
mined the ring fraction,16 while Lee et al. determined the
fractions of cyclic polystyrenes precisely by liquid chroma-
tography at the critical condition method.17 Takano et al.
have reported on preparation and characterization of cyclic

polystyrenes with short poly~2-tert-butyl-butadiene! se-
quence and proposed a novel method to prove the purity of
cyclic molecule,21 while they also prepared polystyrene-
block-polyisoprene cyclic copolymers with three different
compositions and determined the purity of cyclic molecules
included in the samples accurately.20

Linear block copolymer is known to be elongated con-
siderably along the direction normal to microdomain inter-
face because of strong interaction in between incompatible
polymer components.22–27 In contrast to linear homologs,
chain elongation of cyclic block copolymers in bulk must be
suppressed because they have to adopt looped conformation,
their two junction points being tethered on the same micro-
domain interface. Magnitude of chain compression was cal-
culated by Marko6 following the approach of Leibler,28 as-
suming Gaussian chain correlation combined with random
phase approximation in the strong segregation regime, where
actually no chain contraction was predicted comparing do-
main spacing ofAB cyclic copolymer with that ofABA
triblock copolymer molecule with the same molecular weight
and composition.26 Lescanecet al. experimentally observed
domain contraction for two kinds of cyclic block copolymers
as a function ofxN, wherex is the Flory-Huggins interac-
tion parameter and N denotes total degree of
polymerization.18 Recently shrinkage of microdomain was
also reported for cyclic polystyrene-block-polyisoprene22

and also for cyclic polystyrene-block-polybutadiene29 co-
polymers; however, suppression of microdomain has not
been quantitatively clarified yet. Therefore, molecular weight
dependence of the domain spacing of cyclic block copoly-
mers was studied in comparison with the linear homologs to
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determine the degree of chain suppression exactly in this
work using well-characterized samples.28

Cyclic block copolymers from polystyrene~S! and poly-
isoprene~I! were prepared by two-step anionic polymeriza-
tion of isoprene and styrene to produceS-I -S triblock co-
polymers followed by capping both chain ends with reagents
having diphenylethylene group. Some amount of linear tri-
block copolymers were isolated as precursors to compare
their structural feature with cyclic molecules later. Finally
both ends were reacted with the aid of potassium naphtha-
lenide under extremely diluted condition, and cyclic mol-
ecule obtained has been isolated by preparative size exclu-
sion chromatography~SEC! as reported previously.22 Four
copolymers with different molecular weight were prepared;
their code names are (SI)c-I through (SI)c-IV. Number av-
erage molecular weights of (SI)c-I and -II were measured by
membrane osmometry while those of (SI)c-III and -IV were
determined by combining molecular weights of polystyrene
blocks with their mole fractions. The former were estimated
by SEC chromatograms of polystyrene after decomposing
polyisoprene blocks by osonolysis, while latter were mea-
sured byIHNMR. Using the same SEC chromatograms, the
purity of cyclic molecule was estimated, which comprised
coupled polystyrene sequence decomposed from cyclic mol-
ecule and small amount of short polystyrene blocks origi-
nally on both chain ends of unreactedSIS triblock copoly-
mer whose molecular weight is half of the former.22

Molecular weights and compositions of linear triblock co-
polymers, whose code names areSIS-I through SIS-IV,
were separately determined. Molecular characteristics of four
pair of samples are listed in Table I. From this table, we
notice that all the samples have almost the same polystyrene
volume fractionfs of around 0.5 and also that the purity of
cyclic molecules is not perfect but sufficiently high to dis-
cuss the structural feature of cyclic block copolymer mol-
ecule without affecting the results seriously.

Films for morphological observation were cast very
slowly from dilute solutions of tetrahydrofuran for four days,
followed by heating for a week at 150 °C, which is high
enough above glass transition temperature of polystyrene.
Microphase-separated structures were observed by transmis-
sion electron microscopy and by small angle x-ray scatter-
ing; the details of the experiments were reported
previously.22

As is schematically shown in Fig. 1, if small forcef is
applied to two opposite points of a block copolymer mol-

ecule, the total chain dimensionr should be expressed as Eq.
~1! ~Ref. 30!,

r >Rg
2f /kT, ~1!

where Rg denotes radius of gyration of the molecule. The
elastic energyFe per block polymer chain equalsf timesr so
that Eq.~2! holds,

Fe5 f r}kTr2/Rg
2. ~2!

Interfacial energyFi can be described as

Fi5kTgN/r , ~3!

where g is the surface tension in between two component
polymers and is assumed to be large enough to form
microphase-separated structure since we are dealing with the
system in the strong segregation regime. On the other hand,
chain dimension of cyclic molecule can be predicted5 as a
function of N as

Rg}N2/5. ~4!

TABLE I. Molecular characteristics of linear and ring block copolymers.

Mn31023 DPa Mw /Mn Purity ~%! Fs (%) D (nm)

SII-5 31.5 378 1.07 ¯ 50 14.4
SII-5 34.2 412 1.06 95 49 15.0
SII-6 69.4 822 1.06 ¯ 53 25.4
SII-6 67.2 796 1.09 87 53 23.6
SII-7 101 1216 1.04 ¯ 49 32.6
SIR-7 100 1184 1.04 79 53 28.9
SII-8 175 2081 1.06 ¯ 52 46.4
SIR-8 186 2202 1.05 79 52 41.1

aTotal degree of polymerization of samples calculated from molecular weights and volume fractions.

FIG. 1. Schematic comparison of chain elongation of block polymers in
lamellar microdomain in between~a! a cyclic block copolymer and~b! a
linear triblock copolymer.

1130 J. Chem. Phys., Vol. 121, No. 2, 8 July 2004 Matsushita et al.

Downloaded 15 Dec 2005 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Introducing the relationship in Eq.~4! into Eq. ~2! and re-
placing domain spacingDc for cyclic block copolymer from
chain displacementr becauseDc should be proportional tor
as shown in Fig. 1~b!, total free energyF of forming lamellar
structure can be described ignoring numerical prefactor as

F/kT>Dc
2/N4/51N/Dc . ~5!

Minimizing F with respect toDc , we have the relationship

Dc}N3/5. ~6!

The relationship in Eq.~6! should be compared with that for
linear block copolymer, whose domain spacingD, can be
expressed by Eq.~7!, in the strong segregation regime,

D,}N2/3. ~7!

Cyclic block copolymers as well as the corresponding
linear ones were confirmed to possess very periodic and
qualitatively similar alternating lamellar structure from mor-
phological observation as shown in Fig. 2. Figure 3 com-
pares small-angle x-ray scattering~SAXS! diffraction pat-
terns as an example obtained for one of the cyclic molecules

and the corresponding linear counterpart as a function of the
magnitude of the scattering vectorq(54p sinu/l), wherel
is the wavelength of x ray and 2u is the scattering angle. It is
obvious from this figure that the repeating distance forSI
cyclic molecule estimated by the top curve is shorter than
that for aSIS triblock copolymer obtained from the bottom
one. Measured domain spacingDc for cyclic copolymers to-
gether with those for linear counterparts,D, , are listed in
Table I. From this table one notices that the ratioDc /D, is
0.89 for sample pair IV whosexN is about 210 since total
degree of polymerization is about 2100 andx parameter for
polystyrene-polyisoprene pair is 0.10 at room temperature.31

This result is consistent with the previously reported one,18

where the Dc /D, ratio is 0.91 for polystyrene-block-
polydimethylsiloxane cyclic block copolymer withxN of
260.

Using thisx value and the total degree of polymerization
in Table I, xN for (SI)c was estimated to be ca. 40, this
value is large enough compared with theoretically predicted
critical value by Marko6 and Borsari32 independently for cy-
clic block copolymer molecules, ca. 18. Therefore, we can
safely assume that all the samples form two-phase structures
in the strong segregation regime.

Domain spacing values are plotted against total molecu-
lar weights of the samples double logarithmically in Fig. 4
together with those of the linear molecules. It is clear that the
difference inD is getting larger with increasing molecular
weight and the exponenta of the following equation:

D5kMa ~8!

for cyclic molecules is determined to be 0.594 , while that for
linear molecules is 0.681 . The former value is quite consis-
tent with the predicted one as shown in Eq.~6!, while the
latter agrees well with the well-known two-third power law
as is in Eq.~7!.33 This means that the chain dimension along
the direction perpendicular to lamellar microdomain inter-
face for a cyclic molecule is meaningfully smaller than that
of a linear triblock copolymer molecule with the same mo-
lecular weight. This could be attributed to the fact that two
blocks of all the cyclic chains must have loop-type confor-
mation in lamellar phase and hence the elongation along this
direction can be suppressed as predicted because of the teth-

FIG. 2. Typical transmission electron micrographs from block copolymer
films. Samples~a! (SI)c-III and ~b! SIS-III.

FIG. 3. Comparison of small angle x-ray scattering patterns. The top curve
is for cyclic molecule and the bottom one is for a linear counterpart.
Samples~a! (SI)c-IV and ~b! SIS-IV.

FIG. 4. Double logarithmic plots of domain spacing and total molecular
weights of block copolymers. Open circles are the experimental data for
cyclic block copolymers and the filled circles are for linear ones. The solid
and the dotted lines are obtained by least square best fit to the data.
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ering nature. However, it should be noted that the experimen-
tally observed exponent 0.594 is still much larger than the
exponent 0.5 in the radius of gyration (Rg)-molecular weight
~M! relationship,Rg}M1/2, for the unperturbed linear poly-
mer chain.

From this fact, we understand that the polymer chain of
cyclic block copolymer in microphase-separated bulk whose
both ends are tethered on microdomain interface is still con-
siderably elongated toward the direction normal to the inter-
face because of segregation power in this regime. This rela-
tionship, D5kM0.594, has been obtained by the
counterbalanced effects of~a! block chain elongation due to
interfacial segregation power and~b! chain contraction ow-
ing to elastic energy from chains whose both ends are teth-
ered on the same microdomain interface.
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