1,730 research outputs found
Impact ionization in GaAs: a screened exchange density functional approach
Results are presented of a fully ab-initio calculation of impact ionization
rates in GaAs within the density functional theory framework, using a
screened-exchange formalism and the highly precise all-electron full-potential
linearized augmented plane wave (FLAPW) method. The calculated impact
ionization rates show a marked orientation dependence in {\bf k} space,
indicating the strong restrictions imposed by the conservation of energy and
momentum. This anisotropy diminishes as the impacting electron energy
increases. A Keldysh type fit performed on the energy-dependent rate shows a
rather soft edge and a threshold energy greater than the direct band gap. The
consistency with available Monte Carlo and empirical pseudopotential
calculations shows the reliability of our approach and paves the way to
ab-initio calculations of pair production rates in new and more complex
materials.Comment: 11 pages, 4 figures, Submitted to Phys. Rev.
Accurate first principles detailed balance determination of Auger recombination and impact ionization rates in semiconductors
The technologically important problem of predicting Auger recombination
lifetimes in semiconductors is addressed by means of a fully first--principles
formalism. The calculations employ highly precise energy bands and wave
functions provided by the full--potential linearized augmented plane wave
(FLAPW) code based on the screened exchange local density approximation. The
minority carrier Auger lifetime is determined by two closely related
approaches: \emph{i}) a direct evaluation of the Auger rates within Fermi's
Golden Rule, and \emph{ii}) an indirect evaluation, based on a detailed balance
formulation combining Auger recombination and its inverse process, impact
ionization, in a unified framework. Calculated carrier lifetimes determined
with the direct and indirect methods show excellent consistency \emph{i})
between them for -doped GaAs and \emph{ii}%) with measured values for GaAs
and InGaAs. This demonstrates the validity and accuracy of the computational
formalism for the Auger lifetime and indicates a new sensitive tool for
possible use in materials performance optimization.Comment: Phys. Rev. Lett. accepte
Nitrogen doping of TiO2 photocatalyst forms a second eg state in the Oxygen (1s) NEXAFS pre-edge
Close inspection of the pre-edge in oxygen near-edge x-ray absorption fine
structure spectra of single step, gas phase synthesized titanium oxynitride
photocatalysts with 20 nm particle size reveals an additional eg resonance in
the VB that went unnoticed in previous TiO2 anion doping studies. The relative
spectral weight of this Ti(3d)-O(2p) hybridized state with respect to and
located between the readily established t2g and eg resonances scales
qualitatively with the photocatalytic decomposition power, suggesting that this
extra resonance bears co-responsibility for the photocatalytic performance of
titanium oxynitrides at visible light wavelengths
Optical band edge shift of anatase cobalt-doped titanium dioxide
We report on the optical properties of magnetic cobalt-doped anatase phase
titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0
<= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d
<< 1) the optical conductivity is characterized by an absence of optical
absorption below an onset of interband transitions at 3.6 eV and a blue shift
of the optical band edge with increasing Co concentration. The absence of below
band gap absorption is inconsistent with theoretical models which contain
midgap magnetic impurity bands and suggests that strong on-site Coulomb
interactions shift the O-band to Co-level optical transitions to energies above
the gap.Comment: 5 pages, 4 figures, 1 table; Version 2 - major content revisio
Electronic structures of doped anatase : (M=Co, Mn, Fe, Ni)
We have investigated electronic structures of a room temperature diluted
magnetic semiconductor : Co-doped anatase . We have obtained the
half-metallic ground state in the local-spin-density approximation(LSDA) but
the insulating ground state in the LSDA++SO incorporating the spin-orbit
interaction. In the stoichiometric case, the low spin state of Co is realized
with the substantially large orbital moment. However, in the presence of oxygen
vacancies near Co, the spin state of Co becomes intermediate. The
ferromagnetisms in the metallic and insulating phases are accounted for by the
double-exchange-like and the superexchange mechanism, respectively. Further,
the magnetic ground states are obtained for Mn and Fe doped ,
while the paramagnetic ground state for Ni-doped .Comment: 5 pages, 4 figure
Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality
A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites
Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave resonance of
The parity nonconserving spin rotation of neutrons in the 0.734-eV p-wave
resonance of was measured with the neutron transmission method. Two
optically polarized cells were used before and behind a a 5-cm long
target as a polarizer and an analyzer of neutron spin. The rotation
angle was carefully measured by flipping the direction of polarization
in the polarizer in sequence. The peak-to-peak value of the spin rotation was
found to be rad/cm which was consistent with
the previous experiments. But the result was statisticallly improved. The s-p
mixing model gives the weak matrix element as meV. The
value agrees well with the one deduced from the parity-nonconserving
longitudinal asymmetry in the same resonance
Electronic Structure and Optical Properties of the Co-doped Anatase TiO Studied from First Principles
The Co-doped anatase TiO, a recently discovered room-temperature
ferromagnetic insulator, has been studied by the first-principles calculations
in the pseudo-potential plane-wave formalism within the local-spin-density
approximation (LSDA), supplemented by the full-potential linear augmented plane
wave (FP-LAPW) method. Emphasis is placed on the dependence of its electronic
structures and linear optical properties on the Co-doping concentration and
oxygen vacancy in the system in order to pursue the origin of its
ferromagnetism. In the case of substitutional doping of Co for Ti, our
calculated results are well consistent with the experimental data, showing that
Co is in its low spin state. Also, it is shown that the oxygen vacancy enhances
the ferromagnetism and has larger effect on both the electronic structure and
optical properties than the Co-doping concentration only.Comment: 12 pages, 4 figure
Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke.
Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA) treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke
- …