1,624 research outputs found

    Mutations in Transmembrane Domains 1, 4 and 9 of the Plasmodium falciparum Chloroquine Resistance Transporter Alter Susceptibility to Chloroquine, Quinine and Quinidine

    Get PDF
    Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) can result in verapamil-reversible CQ resistance and altered susceptibility to other antimalarials. PfCRT contains 10 membrane-spanning domains and is found in the digestive vacuole (DV) membrane of intraerythrocytic parasites. The mechanism by which PfCRT mediates CQ resistance is unclear although it is associated with decreased accumulation of drug within the DV. On the permissive background of the P. falciparum 106/1(K76) parasite line, we used single-step drug selection to generate isogenic clones containing unique pfcrt point mutations that resulted in amino acid changes in PfCRT transmembrane domains 1 (C72R, K76N, K76I and K76T) and 9 (Q352K, Q352R). The resulting changes of charge and hydropathy affected quantitative CQ susceptibility and accumulation as well as the stereospecific responses to quinine and quinidine. These results, together with a previously described S163R mutation in transmembrane domain 4, indicate that transmembrane segments 1, 4 and 9 of PfCRT provide important structural components of a substrate recognition and translocation domain. Charge-affecting mutations within these segments may affect the ability of PfCRT to bind different quinoline drugs and determine their net accumulation in the DV. © 2006 The Authors Journal compilation © 2006 Blackwell Publishing Lt

    Photo-antagonism of the GABAA receptor

    Get PDF
    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation

    Simulating the influence of plasma protein on measured receptor affinity in biochemical assays reveals the utility of Schild analysis for estimating compound affinity for plasma proteins

    Get PDF
    © 2015 The British Pharmacological Society. Background and Purpose Plasma protein binding (PPB) influences the free fraction of drug available to bind to its target and is therefore an important consideration in drug discovery. While traditional methods for assessing PPB (e.g. rapid equilibrium dialysis) are suitable for comparing compounds with relatively weak PPB, they are not able to accurately discriminate between highly bound compounds (typically >99.5%). The aim of the present work was to use mathematical modelling to explore the potential utility of receptor binding and cellular functional assays to estimate the affinity of compounds for plasma proteins. Plasma proteins are routinely added to in vitro assays, so a secondary goal was to investigate the effect of plasma proteins on observed ligand-receptor interactions. Experimental Approach Using the principle of conservation of mass and the law of mass action, a cubic equation was derived describing the ligand-receptor complex [LR] in the presence of plasma protein at equilibrium. Key Results The model demonstrates the profound influence of PPB on in vitro assays and identifies the utility of Schild analysis, which is usually applied to determine receptor-antagonist affinities, for calculating affinity at plasma proteins (termed KP). We have also extended this analysis to functional effects using operational modelling and demonstrate that these approaches can also be applied to cell-based assay systems. Conclusions and Implications These mathematical models can potentially be used in conjunction with experimental data to estimate drug-plasma protein affinities in the earliest phases of drug discovery programmes

    The guinea pig ileum lacks the direct, high-potency, M2-muscarinic, contractile mechanism characteristic of the mouse ileum

    Get PDF
    We explored whether the M2 muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M3 muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M3 selectivity. Then, we used 4-DAMP mustard to inactivate M3 responses in the guinea pig ileum to attempt to reveal direct, M2 receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M2 receptor knockout, and M3 receptor knockout mice characterized by negative log EC50 (pEC50) values ± SEM of 6.75 ± 0.03, 6.26 ± 0.05, and 6.99 ± 0.08, respectively. The corresponding Emax values in wild-type and M2 receptor knockout mice were approximately the same, but that in the M3 receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration–response curve of oxotremorine-M in wild-type ileum resembled that of the M3 knockout mouse in terms of its pEC50, Emax, and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M3 responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M3 knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M3 response. The guinea pig ileum, therefore, lacks a direct, highly potent, M2-contractile component but may have a direct, lower potency M2 component

    Signaling of the human P2Y(1) receptor measured by a yeast growth assay with comparisons to assays of phospholipase C and calcium mobilization in 1321N1 human astrocytoma cells

    Get PDF
    The human P2Y(1) receptor was expressed in the yeast Saccharomyces cerevisiae strain MPY578q5, which is engineered to couple to mammalian G protein-coupled receptors (GPCRs) and requires agonist-induced activation for growth. A range of known P2Y(1) receptor agonists were examined with the yeast growth assay system, and the results were validated by comparing with potencies in the transfected 1321N1 astrocytoma cell line, in which calcium mobilization was measured with a FLIPR (fluorometric-imaging plate reader). The data were also compared with those from phospholipase C activation and radioligand binding with the use of a newly available radioligand [(3)H]MRS2279 (2-chloro-N(6)-methyl-(N)-methanocarba-2’-deoxyadenosine-3’,5’bisphosphate). In the yeast growth assay, the rank order of potency of 2-MeSADP (2-methylthioadenosine 5’-diphosphate), ADP (adenosine 5’-diphosphate), and ATP (adenosine 5’-triphosphate) is the same as those in other assay systems, i.e., 2-MeSADP>ADP>ATP. The P2Y(1)-selective antagonist MRS2179 (N(6)-methyl-2-deoxyadenosine-3’,5’-bisphosphate) was shown to act as an antagonist with similar potency in all systems. The results suggest that the yeast expression system is suitable for screening P2Y(1) receptor ligands, both agonists and antagonists. The yeast system should be useful for random mutagenesis of GPCRs to identify mutants with certain properties, such as selective potency enhancement for small synthetic molecules and constitutive activity

    A Full Pharmacological Analysis of the Three Turkey β-Adrenoceptors and Comparison with the Human β-Adrenoceptors

    Get PDF
    There are three turkey β-adrenoceptors: the original turkey β-adrenoceptor from erythrocytes (tβtrunc, for which the X-ray crystal structure has recently been determined), tβ3C and tβ4C-receptors. This study examined the similarities and differences between these avian receptors and mammalian receptors with regards to binding characteristics and functional high and low affinity agonist conformations.Stable cell lines were constructed with each of the turkey β-adrenoceptors and 3H-CGP12177 whole cell binding, CRE-SPAP production and (3)H-cAMP accumulation assays performed. It was confirmed that the three turkey β-adrenoceptors are distinct from each other in terms of amino acid sequence and binding characteristics. The greatest similarity of any of the turkey β-adrenoceptors to human β-adrenoceptors is between the turkey β3C-receptor and the human β2-adrenoceptor. There are pharmacologically distinct differences between the binding of ligands for the tβtrunc and tβ4C and the human β-adrenoceptors (e.g. with CGP20712A and ICI118551). The tβtrunc and tβ4C-adrenoceptors appear to exist in at least two different agonist conformations in a similar manner to that seen at both the human and rat β1-adrenoceptor and human β3-adrenoceptors. The tβ3C-receptor, similar to the human β2-adrenoceptor, does not, at least so far, appear to exist in more than one agonist conformation.There are several similarities, but also several important differences, between the recently crystallised turkey β-adrenoceptor and the human β-adrenoceptors. These findings are important for those the field of drug discovery using the recently structural information from crystallised receptors to aid drug design. Furthermore, comparison of the amino-acid sequence for the turkey and human adrenoceptors may therefore shed more light on the residues involved in the existence of the secondary β-adrenoceptor conformation

    Lithocholic Acid Is an Eph-ephrin Ligand Interfering with Eph-kinase Activation

    Get PDF
    Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-trasformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA) as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Ki = 49 µM). Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC50 = 48 and 66 µM, respectively) without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ) activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method) confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis

    Pharmacological profile of a potent, efficacious fentanyl derivative in rhesus monkeys

    Full text link
    The recent synthesis of fentanyl derivatives, some of which appear to have novel profiles of pharmacological effects, has provided compelling evidence that μ opioid efficacy might be altered systematically by modifications in the parent compound fentanyl. In the present study a new 4-(heteroanilido)-piperidine, compound 28, was studied for its effects in rhesus monkeys. In self-administration studies compound 28 maintained rates of lever pressing similar to those maintained by alfentanil; the reinforcing effects of compound 28 were attenuated by the opioid antagonist quadazocine. In drug discrimination studies compound 28 did not substitute for the κ agonist ethylketocyclazocine and did substitute for the μ agonist alfentanil. In morphine-treated subjects discriminating between saline and naltrexone, compound 28 did not substitute for naltrexone; however, in morphine-abstinent subjects compound 28 reversed naltrexone lever responding. Moreover, this discriminative stimulus effect in morphine-abstinent subjects was antagonized by naltrexone and by quadazocine in a manner consistent with μ receptor mediation. Compound 28 also was an effective analgesic in a warm-water, tail-withdrawal procedure and it decreased markedly respiratory function. The analgesic effects as well as the respiratory depressant effects of compound 28 were antagonized by quadazocine. Together, these results show compound 28 to be a potent, efficacious μ agonist of similar potency to alfentanil. Large differences in apparent efficacy at μ receptors between compound 28 and another compound in this series (mirfentanil), clearly demonstrate that, within this chemical family, small chemical changes can confer significant differences in pharmacologic effect.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46340/1/213_2005_Article_BF02245876.pd

    The Synthesis, Structural Characterization, and Receptor Specificity of the {alpha}-Conotoxin Vc1.1

    Get PDF
    The {alpha}-conotoxin Vc1.1 is a small disulfide-bonded peptide currently in development as a treatment for neuropathic pain. This study describes the synthesis, determination of the disulfide connectivity, and the determination of the three-dimensional structure of Vc1.1 using NMR spectroscopy. Vc1.1 was shown to inhibit nicotine-evoked membrane currents in isolated bovine chromaffin cells in a concentration-dependent manner and preferentially targets peripheral nicotinic acetylcholine receptor (nAChR) subtypes over central subtypes. Specifically, Vc1.1 is selective for {alpha}3-containing nAChR subtypes. The three-dimensional structure of Vc1.1 comprises a small {alpha}-helix spanning residues Pro6 to Asp11 and is braced by the I-III, II-IV disulfide connectivity seen in other {alpha}-conotoxins. A comparison of the structure of Vc1.1 with other {alpha}-conotoxins, taken together with nAChR selectivity data, suggests that the conserved proline at position 6 is important for binding, whereas a number of residues in the C-terminal portion of the peptide contribute toward the selectivity. The structure reported here should open new opportunities for further development of Vc1.1 or analogues as analgesic agents
    corecore