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Summary 

Background and purpose: Plasma protein binding (PPB) influences the free fraction of drug 

available to bind to its target and is therefore an important consideration in drug discovery. 

While traditional methods for assessing PPB (e.g. rapid equilibrium dialysis) are suitable for 

comparing compounds with relatively weak PPB, they are not able to accurately discriminate 

between highly bound compounds (typically >99.5 %). The aim of the present work was to 

use mathematical modelling to explore the potential utility of receptor binding and cellular 

functional assays to estimate the affinity of compounds for plasma proteins. Plasma proteins 

are routinely added to in vitro assays, so a secondary goal was to investigate the effect of 

plasma proteins on observed ligand-receptor interactions. 

Experimental approach: Using the principle of conservation of mass and the law of mass-

action, a cubic equation was derived describing the ligand-receptor complex [𝐿𝑅] in the 

presence of plasma protein at equilibrium.  

Key results: The model demonstrates the profound influence of PPB on in vitro assays and 

identifies the utility of Schild analysis, which is usually applied to determine receptor-

antagonist affinities, for calculating affinity at plasma proteins (termed 𝐾𝑝). We have also 

extended this analysis to functional effects using operational modelling and demonstrate that 

these approaches can also be applied to cell-based assay systems.  

Conclusions and implications: These mathematical models can potentially be used in 

conjunction with experimental data to estimate drug-plasma protein affinities in the earliest 

phases of drug discovery programs.  
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Introduction 

In vivo drug molecules may be considered to be either bound to proteins and lipids in plasma 

and tissue or free to diffuse in the aqueous environment that surrounds them. The binding of 

drugs to plasma protein, mainly to -acid glycoprotein (AAG) and serum albumin, can have a 

profound effect on the activity of a drug and is crucially involved in dictating drug 

pharmacokinetic and pharmacodynamic relationships.  Human serum albumin (HSA) is the 

most abundant extracellular protein found in blood plasma and tissue fluids (Mr 66 kDa, 0.53-

0.75mM, Goodman & Gilman 1996) and is by far the most important non-specific transporter 

protein in the circulatory system.  HSA acts as a transporter molecule for a variety of 

endogenous compounds including nutrients such as fatty acids hormones and waste 

products including heme, bilirubin and a range of renal toxins.  This one protein is able to 

bind a variety of structurally diverse naturally occurring ligands and can also bind to a wide 

range of drug molecules. This ability of albumin to adsorb a significant amount of drug in 

plasma and tissue fluids is the basis of the pharmaceutical industry’s long-standing interest in 

the protein. According to the ‘free drug hypothesis’ the pharmacological activity or 

effectiveness of a drug will be determined by the exposure to the unbound concentration of 

that drug in plasma rather than its total concentration (Trainor 2007).  As a consequence 

drugs that show high plasma protein binding will require dosing at higher concentrations in 

order to achieve their therapeutic effect.  This is often in spite of the fact that the affinity of 

the drug is higher for the receptor or enzyme target and is a direct consequence of the high 

concentration of albumin present in blood plasma.  It is important to note, however, that drug-

protein binding not only affects the binding of drug to receptor but also affects the rate at 

which drugs are eliminated from the body, prolonging exposure of certain compounds.  For 

these reasons pharmaceutical companies have developed screens for HSA binding early in 

the drug discovery process to better understand these complex interactions.    

Traditionally plasma protein binding is assessed by equilibrium dialysis and ultrafiltration 

methods that define the fraction or percentage of compound that is protein bound and free in 
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solution. Such methods provide good quantification of serum protein binding for many 

compounds, but can be of limited utility in discriminating between highly bound compounds 

that can have affinities in the nM range (Kratochwil et al., 2002). The usual limit of accurate 

detection is defined as > 99.5 %, but it is not uncommon for whole chemical series to display 

this level of plasma protein binding. This makes it difficult to distinguish between compounds 

based on plasma protein binding and offers little information about the structure-activity 

relationship for plasma protein binding. This situation can be illustrated using the model 

described by Toutain & Bousquet-Melou (2002). By formulating expressions for the free 

fraction of drug in terms of free and total plasma concentrations as well as incorporating the 

principle of conservation of drug, an equation with some underlying assumptions is derived 

for the free fraction of drug, namely 𝑓𝑢 = 𝐾𝑝/(𝐵𝑚𝑎𝑥 + 𝐾𝑝), where 𝐾𝑝 and 𝐵𝑚𝑎𝑥 are the protein 

affinity and maximal binding capacity constants for the protein. Using the above equation, the 

% of ligand unbound can be readily calculated for a protein concentration or 𝐵𝑚𝑎𝑥 equal to 

600M (or 4% HSA), see Table 1, with corresponding Figure 1. This highlights the fact that 

strongly bound compounds are represented by a very narrow interval on the percentage 

scale, and measurements made here are therefore more prone to error.  This can be 

overcome, in part, by performing dilutions of plasma, but this can result in limitations with 

accurately quantifying drug concentrations.  

As serum protein can be readily included in an in-vitro pharmacology assay, it should be 

possible to calculate the degree of compound binding to plasma protein by observing the 

changes in observed affinity in the presence of plasma protein, using so-called “serum-shift” 

assays. The measurement of apparent 𝐾𝑑 values for serum protein by IC50 shift analysis has 

been explored previously (Copeland, 2000; Rusnak et al., 2004). Copeland and colleagues 

have presented a practical and theoretical treatment of the relationship between the IC50 

determined by in-vitro assays in the presence and absence of plasma proteins and the 

apparent Kd value for ligand binding to protein.  These mathematical approaches, albeit in an 
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enzymology context, have provided the experimenter with a practical way of calculating 

affinity values of unlabelled compounds.  

In this study we have expanded upon the models of Copeland and Rusnak to include the 

conservation of all three binding partners namely ligand, protein and receptor, producing 

explicit mathematical solutions that can be applied to experimental data (both binding and 

functional) to provide estimates of 𝐾𝑃.  This analysis allows the investigator to determine 𝐾𝑃 

values for both labelled ligands using the technique of saturation binding and also for 

unlabelled agonists in functional assays using ‘operational model’ fitting. Finally, we also 

demonstrate that a Schild analysis-type approach can provide the investigator with a 

relatively simple method to estimate drug-protein affinities. Such information may be used to 

better understand the structural determinants of plasma protein binding.  
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Methods  

The Mathematical Model 

We consider a simple model in which the radioligand binds to both receptor and protein 

according to the law of mass-action and in which the conservation of mass applies. The 

model consists of two binding processes, as illustrated below: 

 

where [𝐿], [𝑅] and [𝑃] denote (free) radioligand, (free) receptor and (free) protein 

concentrations respectively, [𝐿𝑅] and [𝐿𝑃] are ligand-receptor, ligand-protein complex 

concentrations respectively and 𝐾𝑅 and 𝐾𝑃 are their associated equilibrium dissociation 

constants. All concentrations are measured in units of molar unless otherwise stated. The 

equilibrium equations for the above processes are given by: 

 𝑘𝑅+[𝐿][𝑅] − 𝑘𝑅−
 
[𝐿𝑅] = 0 

𝑘𝑃+[𝐿][𝑃] − 𝑘𝑃−
 
[𝐿𝑃] = 0 

where 𝑘𝑅+, 𝑘𝑅−, 𝑘𝑃+, 𝑘𝑃− are the association and dissociation rates of ligand binding to 

receptor and protein. These relations can be expressed as: 

[𝐿][𝑅] = 𝐾𝑅[𝐿𝑅]           (1) 

[𝐿][𝑃] = 𝐾𝑃[𝐿𝑃] .          (2) 

where  𝐾𝑅 = 
𝑘𝑅−

𝑘𝑅+
  and 𝐾𝑃 =  

𝑘𝑃−

𝑘𝑃+
. Additionally, from the conservation of mass principle, we 

have the following simple equations: 
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[𝐿]𝑇 = [𝐿] + [𝐿𝑅] + [𝐿𝑃]         (3) 

[𝑃]𝑇 = [𝑃] + [𝐿𝑃]          (4) 

[𝑅]𝑇 = [𝑅] + [𝐿𝑅]          (5) 

where [𝐿]𝑇 is the total concentration of ligand added, [𝑃]𝑇 the total concentration of protein 

added and [𝑅]𝑇 the total concentration of receptor added. This gives five equations in the five 

unknowns [𝐿], [𝑅], [𝑃], [𝐿𝑅] and [𝐿𝑃] which, in combination, can be used to describe the 

three interacting components at equilibrium. By suitable rearrangements of equations (1) to 

(5), further equations describing the concentrations of ligand bound to both protein and 

receptor may be formulated and these two equations can be further reduced to a single cubic 

equation in the variable [𝐿𝑅]. To see this, we rearrange equations (3), (4) and (5) so that the 

free concentrations of ligand, protein and receptor are expressed in terms of the total 

concentrations plus complex concentrations e.g. [𝐿]𝑇 − [𝐿𝑅] − [𝐿𝑃] = [𝐿], and insert these 

into equations (1) and (2) which leads to the following relationships: 

𝐾𝑅[𝐿𝑅] – ([𝐿]𝑇 − [𝐿𝑅] − [𝐿𝑃])([𝑅]𝑇 − [𝐿𝑅]) = 0                  (6) 

 
𝐾𝑃[𝐿𝑃] − ([𝐿]𝑇 − [𝐿𝑅] − [𝐿𝑃])([𝑃]𝑇 − [𝐿𝑃]) = 0  .

      (7) 

Solving (6) for [𝐿𝑃] yields 

[𝐿𝑃] =
1

[𝐿𝑅]−[𝑅]𝑇
(𝐾𝑅[𝐿𝑅] − [𝐿]𝑇[𝑅]𝑇 + [𝐿]𝑇[𝐿𝑅] + [𝐿𝑅][𝑅]𝑇 − [𝐿𝑅]2)  .   (8) 

(See Appendix 1 for a mathematical discussion on the validity of this expression.) 

Insertion of the expression for [𝐿𝑃]  in equation (8) into (7) yields a cubic equation in terms 

of [𝐿𝑅] namely  

𝐴[𝐿𝑅]3 + 𝐵[𝐿𝑅]2 + 𝐶[𝐿𝑅] + 𝐷 = 0           (9) 

where 

𝐴 = 𝐾𝑅 − 𝐾𝑃 
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𝐵 = 𝐾𝑃𝐾𝑅 + 2 𝐾𝑃[𝑅]𝑇 + 𝐾𝑃[𝐿]𝑇 + 𝐾𝑅[𝑃]𝑇 − 𝐾𝑅
2 − 𝐾𝑅[𝐿]𝑇 − 𝐾𝑅[𝑅]𝑇 

𝐶 = [𝑅]𝑇(−𝐾𝑃𝐾𝑅 − 𝐾𝑃[𝑅]𝑇 − 2 𝐾𝑃 [𝐿]𝑇 − 𝐾𝑅[𝑃]𝑇 + 𝐾𝑅[𝐿]𝑇) 

𝐷 = 𝐾𝑃[𝐿]𝑇[𝑅]𝑇
2   

A cubic equation can be solved using Cardano’s method (Weisstein), a derivation of which is 

given in Appendix 2. We also show in Appendix 2 that the cubic equation (9) has a single 

solution satisfying 0 ≤ [𝐿𝑅] <  [𝑅]𝑇  and that this is the solution that is relevant for this 

problem. It is found numerically that the cubic equation has three real roots and the required 

solution of the equation is given by 

[𝐿𝑅] = 2√
−𝑞

3
cos (

𝜃+2𝜋

3
) −

𝑎

3
          (10) 

where the parameters 𝑎, 𝜃 and 𝑞 are related to the parameters 𝐾𝑅 , 𝐾𝑃 , [𝐿]𝑇 , [𝑅]𝑇 , [𝑃]𝑇 using 

the expressions given in Appendix 2. This solution is also presented in GraphPad Prism 

language in Appendix 2. With an explicit solution for the ligand-receptor complex formulated, 

we now proceed to show how varying these parameters affect the observed profile of ligand-

receptor saturation plots and dose-response curves.  

[3H]-RO-1138452 Saturation Binding 

The saturation binding assays were performed in 96-deep well plates at room temperature 

(~21°C).  A range of concentrations of [3H]-RO-1138452 were used in the assay (~5 pM-10 

nM) in order to construct saturation binding curves as described by Sykes et al., 2009. CHO-

IP cell membranes (2.5µg/well) were incubated in binding buffer containing 20 mM HEPES, 

10 mM MgCl2 and 0.02% (w/v) pluronic acid, with continuous gentle agitation for 2.5 h to 

ensure equilibrium was reached. The assay was performed in the presence of a range of 

concentrations of HSA (0 µM – 640 µM). To avoid ligand depletion at the low concentrations 

of [3H]-RO-1138452 used in the assay, the assay volume was increased to 1.5 ml. Non-

specific binding was determined using 1 µM unlabeled RO-1138452. After incubation, the 

bound and free [3H]-RO-1138452 were separated by rapid vacuum filtration using a 
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FilterMate Cell Harvester (Perkin Elmer Life and Analytical Sciences) onto 96 well GF/C filter 

plates and rapidly washed three times with ice cold wash buffer (20 mM HEPES, 1 mM 

MgCl2, pH 7.4). After drying (> 4 h), 40 µl of Microscint-20 (Perkin Elmer Life and Analytical 

Sciences) was added to each well. Radioactivity was quantified using single-photon counting 

on a TopCount microplate scintillation counter (Beckman Coulter). Aliquots of [3H]-RO-

1138452 were also quantified accurately to determine how much radioactivity was added to 

each well using liquid scintillation spectrometry on a LS6500 scintillation counter (Beckman 

Coulter). 

As the amount of radioactivity varied slightly for each experiment (<5%), data are expressed 

graphically as the mean ± range for individual representative experiments unless otherwise 

stated, whereas all values reported in the text and tables are mean ± S.E.M. for at least three 

separate experiments. Concentration-response data were also fitted using a four-parameter 

logistic equation. Statistical analysis performed and data fitting were performed using Prism 

software (ver. 5.03; GraphPad Software, San Diego, CA). 

Rapid Equilibrium Dialysis 

Rapid equilibrium dialysis (RED) was performed as described by Waters et al, 2008 using a 

48-cell RED device manufactured by Pierce Biotechnology (ThermoFisher Scientific, 

Waltham, MA). Briefly, RO-1138452 was incubated with human plasma at a concentration of 

5 μM for 10 min after which it was transferred (200 μL) to one of the two sample chambers in 

the RED device. 350µL of 100 mM phosphate buffer was added to the adjacent chamber, the 

plate was sealed and the system left to equilibrate on a shaker shaker at 37°C for 4 hours. 

50 µL of each sample was transferred to a new 96 well plate and diluted with 50 µL of 

phosphate buffer. 250 µL of acetonitrile containing IS (Sulfadimethoxine, 0.1 µg/mL) were 

added to the wells, the plate was centrifuged (RT, 3500 rpm, 10 min) and 150 µL of 

supernatant was transferred into a fresh 96 well plate and diluted with 150 µL of deionized 

water. Chromatographic separation was achieved by a Waters Aquity UPLC system using 

formic acid (0.1%) as mobile phase A and methanol as Mobile Phase B. The UPLC column 
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was a Waters Acquity BEH, 1.9 µm, 2.1 x 50 mm. Under the described conditions the 

retention time of RO-1138452 was 1.2 minutes. Detection was performed by an Applied 

Biosystems API5500 Mass Spectrometer with Turbo Ion Spray ionization in positive mode 

and RO1138452 quantified using area of the chromatographic peak divided by that of the 

internal standard to obtain the area peak ratio. The peak area ratio corresponding to the 

buffer side was divided by that corresponding to the plasma side in each RED device, to 

calculate the percentage of free drug. This was done for the three replicates of each 

experiment and a mean and coefficient of variation calculated. 

 

Results  

Simulations of ligand receptor [LR] binding curves  

In these simulations, the concentration of total ligand added is varied and the concentration 

of ligand-receptor complex formed is plotted for a given set of parameter values relevant to 

in-vitro studies.  Simulations have been performed using Microsoft Excel version 10 and 

Maple version 11 and graphically illustrated using GraphPad Prism 5.0. 

Effect of plasma protein on apparent binding affinity 

The effect of increasing receptor affinity 𝐾𝑅 on the concentration of ligand-receptor binding 

complex formed is shown in Figure 2a, a simulation performed in the absence of plasma 

protein i.e. [𝑃]𝑇 = 0.  A typically encountered receptor concentration [𝑅]𝑇 is employed fixed 

at 0.1nM and total ligand added [𝐿]𝑇 ranges from 0.03pM to 100M. As one decreases the 

affinity of the ligand for the receptor, the receptor occupancy curves shift to the right as one 

would predict. Of particular note in the figure is the concept of ligand depletion, a 

phenomenon most evident experimentally when using high-affinity ligands in assay systems 

where binding of ligand to receptor results in a significant reduction in the free ligand 

concentration (Carter et al. 2007; Goldstein & Barrett, 1987; Wells et al. 1980). For ligand 

affinities 𝐾𝑅 ≤ 0.1𝑛𝑀 where the concentration of receptor exceeds the concentration of 
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added ligand by >10 fold, ligand depletion results in saturation plots from which inaccurate 

estimates of 𝐾𝑅 will be determined. It is also apparent from Figure 2a how ligand depletion 

results in saturation binding curves which have much steeper gradients as also evident in 

Carter et al. (2007). 

The direct effect of including protein,[𝑃]𝑇 = 15 µ𝑀, 𝐾𝑃 = 0.1 µ𝑀 in the model is illustrated in 

Figure 2b.  For the same parameter values of [𝑅]𝑇 and  𝐾𝑅  employed to produce Figure 2a, 

a parallel rightward shift of the receptor occupancy curve is now evident in the presence of 

plasma protein. The apparent 𝐾𝑅 observed in the presence of protein is shifted ~100 fold 

from the actual value of  𝐾𝑅 obtained in its absence. Saturation of protein by ligand is now 

evident when one considers affinities at the receptor of 𝐾𝑅  ≥ 100𝑛𝑀, under these conditions 

as ligand concentration is increased a disproportionate concentration of ligand becomes 

freely available to bind receptors (i.e. a deviation from constant % fraction unbound). 

The final figure in this trilogy, Figure 2c illustrates the effect of changing drug affinity 𝐾𝑃 for a 

fixed concentration of protein (15M or 0.1%), a concentration routinely employed in receptor 

binding and functional assays. Decreasing the affinity of the ligand for the protein results in 

ligand-receptor [𝐿𝑅] binding curves resembling standard saturation plots without protein from 

which one can estimate the true affinity of the ligand for its receptor.  

Simulations of protein-bound drug and free drug  

One can use equation (8) to find the concentration of ligand bound to protein [𝐿𝑃] from 

which one can derive the concentration of free ligand [𝐿] using equation (3). Figure 3 is an 

example simulation illustrating the concentration of ligand-protein complex formed at different 

concentrations of total ligand added for given 𝐾𝑃 values. In the simulation the following 

parameter values remain fixed 𝑃𝑇 = 15 µ𝑀,  𝐾𝑅 = 1 𝑛𝑀 and [𝑅]𝑇 = 0.1𝑛𝑀. Note again the 

phenomenon of ligand depletion in situations where protein concentration is in excess of 

added ligand concentration.  As expected, decreasing the affinity of the drug for the protein 

results in reduced protein occupancy for any given concentration of ligand added. Figure 4 is 
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a plot of the free concentration of ligand against total ligand added on a log-log scale for 

increasing concentrations of protein. In the simulation, the following parameter values remain 

fixed 𝐾𝑃 = 1 µ𝑀,  𝐾𝑅 = 1 𝑛𝑀 and [𝑅]𝑇 = 0.1𝑛𝑀. It can be observed that free fraction remains 

linear up to the point where protein effectively starts to run out, at which point deviations in 

free ligand occur until eventually the protein saturates and added ligand concentration 

approximates to free ligand concentration. From an in-vitro assay perspective, inclusion of 

0.1% HSA (or 15M) results in an approximately linear relationship between free ligand and 

total added ligand for concentrations of added ligand [𝐿]𝑇 < 10 µ𝑀. This linear relationship is 

the basis of the free fraction calculation employed routinely to estimate free drug 

concentrations in-vivo, and is based on the % of drug bound to plasma proteins which can be 

assumed to be a constant proportion of the total added drug provided the protein is not fully 

saturated.  

One can formulate cubic equations, similar to that exemplified by equation (9), describing 

the ligand-protein complex and free ligand concentrations completely separately and produce 

explicit cubic solutions as shown in equation (10). The reader can find full details in 

Appendix 3. Using the explicit solution given for the concentration [𝐿𝑅] in equation (10) and 

the resultant concentrations [𝐿] and [𝐿𝑃], it is instructive to plot these variables in one figure 

to see visually where the ligand is located for any given concentration of ligand added, as 

alluded to previously. Figure 5 encapsulates this information in plots of ligand-receptor and 

ligand-protein occupancy for varying concentrations of ligand added for a ligand with high 

affinity (1 µM, Figure 5a) and low affinity (100 µM, Figure 5b) for plasma protein. The 

following parameter values we kept constant [𝑃]𝑇 = 15 µ𝑀,  𝐾𝑅 = 1 𝑛𝑀 and [𝑅]𝑇 = 0.1𝑛𝑀 in 

both Figures.  

From Figure 5a it is apparent that one only has full saturation of both receptor and protein as 

[𝐿]𝑇 approaches 10M, and that the free ligand [𝐿] is only approximately equal to the total 

ligand added, for the given parameter configurations, at a concentration approaching 100µM. 

What is clear is that there is a steep shift in the free ligand corresponding to the incomplete 
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saturation of protein. Figure 5b has the same parameter configurations as those in Figure 

5a barring a lower affinity of the ligand for the protein, namely  𝐾𝑃 = 100 µ𝑀. This 

configuration results in full saturation of receptor at lower concentrations of ligand added, as 

one would expect, since proportionally more free ligand is available for any concentration of 

ligand added.  

Using binding models to estimate plasma protein affinity (Kp) 

As a consequence of formulating an analytic solution equation (10) that describes ligand 

binding in the presence of protein, it is now possible to use least-squares regression to 

provide protein affinity estimates ( 𝐾𝑝) by programming the explicit solution of the cubic 

equation into statistical packages such as Prism (detailed in Appendix 2). 

We have also explored the possibility of using an analysis similar in principle to Schild 

analysis to determine the affinity of ligand for plasma protein (Arunlakshana and Schild, 

1959). Classically, Schild analysis is used to calculate the affinity of an antagonist for its 

receptor in the presence of an agonist by making use of a Schild plot, constructed from 

agonist dose ratios (DR) calculated for several concentrations of competing antagonist 

(Kenakin, 1982; Kenakin, 1992). The logarithm of these dose ratios minus one (log(DR-1)) is 

then plotted against the log of the concentration of the antagonist and the data is fitted using 

linear regression. Mathematically, dose ratios are defined through the equations derived by 

Gaddum to calculate fractional receptor occupancy (f) of agonist in the presence of 

antagonist (Gaddum, 1937). Our intention here is to show that, given the explicit solution to 

the cubic provided in equation (10), one can use Schild analysis to calculate the affinity of 

the ligand for the protein, see Appendix 4 for full derivation. To this end, we have modelled 

ligand-receptor occupancy, using the explicit solution to the cubic, keeping receptor 

concentration, ligand-protein affinity and ligand-receptor affinity fixed whilst varying protein 

and total ligand concentration as shown in Figure 6a. Using the same principles governing 

Schild analysis we have calculated dose ratios from these ligand receptor occupancy plots 

and plotted (y-axis) them against plasma protein concentration (x-axis) rather than antagonist 
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concentration as is the norm. The affinity of ligand for the protein is reflected in the intercept 

on the x-axis of the Schild plot, see Figure 6b (i.e. 𝐾𝑃 = 1µ𝑀). 

It should be noted that Schild analysis can fail to provide a reliable estimate for 𝐾𝑃 when the 

affinity for the protein is greater than that for the receptor, i.e. 𝐾𝑅 > 𝐾𝑃 and [𝑃]𝑇 < [𝐿]𝑇. This 

situation is, however, seldom seen as molecules in a lead optimization program often have a 

higher affinity for their target than the micomolar range commonly observed for plasma 

proteins.  The situation 𝐾𝑅 > 𝐾𝑃 results in a change of root in the explicit solution to the cubic, 

namely instead of considering the solution as given in equation (10) for [𝐿𝑅], the requisite 

root is given by [𝐿𝑅] = 2√
−𝑞

3
cos (

𝜃+4𝜋

3
) −

𝑎

3
 with the same parameter values for the 

coefficients in the cubic. 

As simulated in Figure 7, for situations in which the protein affinity exceeds the receptor 

affinity the binding curves become non-parallel in nature, and hence are not suitable for the 

Schild-type analysis.  

Testing the Schild method experimentally 

In order to demonstrate that the Schild-type method was applicable in practice we used a 

prostacyclin IP receptor binding assay as a model system. We constructed saturation curves 

to the radiolabelled IP receptor antagonist [3H]-RO-1138452 in the absence and presence of 

increasing concentrations of human serum albumin (Figure 8). Specific [3H]-RO-1138452 

binding to CHO-IP membranes was saturable and best described by the interaction of the 

radioligand with a single population of high affinity binding sites. The IP receptor expression 

level of the CHO-IP cell line was estimated from the Bmax in [3H]-RO-1138452 saturation 

binding as 10.01 ± 0.57 pmol/mg (n = 10). From these studies, the equilibrium dissociation 

constant (Kd) of [3H]-RO-1138452 was determined to be 0.22 ± 0.03 nM (n = 10). Upon the 

addition of increasing concentrations of HSA to the assay (Figure 8A), a parallel rightward 

shift in the saturation curve was observed with no significant reduction in the Bmax. In order to 

estimate the pKp value of  [3H]-RO-1138452 for HSA, the log (DR-1) was calculated for the 
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binding at each concentration of HSA tested and plotted against the log of the HSA 

concentration to produce a Schild plot (Figure 8B). Individual Schild slopes from 3 

independent experiments performed in duplicate were not significantly different from unity 

(0.96 ± 0.10) and therefore slopes were constrained to unity.   A mean pKp value for [3H]-RO-

1138452 binding to HSA was estimated from the x-axis intercept values of theses Schild 

plots, which was found to be 4.19 ± 0.17 (or a Kp of 65 µM).   

In order to compare this value with one derived using a more conventional method, we 

utilized rapid equilibrium dialysis to assess the fraction of RO-1138452 bound to plasma. By 

comparing the concentration of drug in the buffer cell with that found in the plasma side the 

percentage of bound drug in plasma was calculated to be 95.2 ± 0.41 % (n=3). Using the 

equation described by Toutain & Bousquet-Melou (2002) this value was used to estimate the 

KP of RO-1138452 in plasma of 33 µM. This value compares well with the KP calculated for 

serum albumin using the [3H]-RO-1138452 binding assay (65 µM), suggesting that the main 

component in plasma that binds RO-1138452 is serum albumin and that the Schild-type 

method is an accurate way of assessing compound affinity at individual plasma proteins.  

Simulating functional assays 

Incorporating an Operational Model 

Using the binding equations described above it is possible experimentally to estimate the 

affinity of radiolabelled ligands for plasma protein.  However it is not practical to radiolabel 

every compound of interest in order to obtain accurate protein affinity values.  We have 

therefore explored the possibility of utilizing functional assays for the estimation of 𝐾𝑃 values. 

A pragmatic model relating binding and function has been previously described by Black and 

Leff who constructed an operational model of agonism describing the efficacy of agonists 

and partial agonists once bound to receptors (Black and Leff, 1983). Starting from the Hill-

Langmuir equation they derived the so-called “transducer” function, a function describing the 

transduction of receptor occupation into a response 
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𝐸 =
𝐸𝑚 .[𝐴𝑅]

𝐾𝐸+[𝐴𝑅]
          (11) 

where [𝐴𝑅] is the concentration of agonist bound to receptor. 𝐾𝐸 is the concentration of [𝐴𝑅]  

that elicits 50% maximal response and 𝐸𝑚 is the maximum response possible in the system 

under study. Using our explicit equation for the concentration of ligand bound to receptor 

equation (10), we can generate operational model curves for different 𝐾𝐸  values equation 

(11) in the presence and absence of plasma protein  [𝑃]𝑇 within the cubic model, as 

simulated in Figures 9a and b. The inclusion of plasma protein produces the expected 

rightward shift of the agonist [𝐿]𝑇 effect curve but has no apparent effect on the maximal 

agonist response. This effect is analogous to the effect of including plasma protein in a 

saturation binding experiment, as illustrated in Figure 2b. Also demonstrated in this model is 

the graded reduction in agonist effect and potency as one increases the value of 𝐾𝐸, as 

expected in the operational model.  

We have utilized this operational form of the model to simulate a Schild-type analysis, as 

described above for binding experiments. As can be seen from Figures 10a and 9b, this 

suggests that Schild-type analysis can be used in functional assays to determine the affinity 

of a compound for serum protein.  

 

Discussion 

Plasma protein binding is an important parameter in many drug discovery projects and is 

usually measured using equilibrium dialysis, ultrafiltration or liquid chromatography 

techniques (Tiller et al., 1995). While these approaches are sufficient for the large majority of 

compounds, they can struggle to differentiate between ligands that are >99.5% bound. In 

order to discriminate between highly bound compounds it becomes necessary to consider 

binding in terms of equilibrium affinity constants rather than fraction bound. A theoretical 

model for predicting serum albumin affinities utilising an IC50 shift assay has been described 

by Copeland (2000). We have expanded this principle to create a thermodynamically 
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complete model at equilibrium considering conservation of mass for each species. This 

model has two main utilities. Firstly, it can be used to explore the potential influence of 

plasma proteins on observed pharmacology in in vitro assays, and secondly it can be 

employed to determine the affinity of compounds at plasma proteins, using either direct fitting 

to data or by the commonly used Schild plot. The model is in the form of a cubic equation 

with coefficients given in terms of concentrations of total ligand, receptor and protein added, 

and incorporating their associated equilibrium dissociation constants 𝐾𝑅 and 𝐾𝑃. By ensuring 

conservation of each species we can explore depletion of each component in the system, 

which is evident in a number of the simulations we have performed.  

These simulations illustrate how the inclusion of plasma protein directly affects the position of 

the saturation curve; if a ligand has affinity for serum protein then inclusion of that protein in 

an in vitro assay would result in an underestimation of the affinity at the receptor. This is of 

particular importance as it is often routine to include serum albumin in in vitro assays to 

reduce non-specific binding of compounds, especially radioligands. In addition, we have 

simulated binding curves of ligand bound to protein for various values of 𝐾𝑃 and simulated 

concentrations of free ligand for various concentrations of protein with a fixed 𝐾𝑃, highlighting 

the dramatic effect protein can have on the concentration of free drug. This free drug fraction 

can be considered proportional to the total added ligand concentration over a large 

concentration range, but our simulations demonstrate that a deviation from this linear 

relationship will occur once the concentration of drug exceeds the concentration of plasma 

protein to which it binds. While this is highly unlikely to occur for the majority of clinically used 

drugs in vivo, it could become a significant issue in an in vitro assay system where 

significantly less protein is added. For example, routinely utilized serum albumin 

concentrations range from 1.5 – 15 µM (0.01-0.1 %), concentrations that are often exceeded 

for compounds in in vitro biochemical assays. 

Although it is beneficial to consider the influence of plasma proteins on direct binding of 

ligand to receptor, it is becoming more common to utilize functional assays to characterize 



19 
 

new compounds. To address this we have incorporated our explicit solution for the ligand-

receptor complex into the operational model of pharmacological agonism (Black and Leff, 

1983) to enable simulation and analysis on functional responses in the presence and 

absence of plasma proteins. As can be seen from the simulations, these equations behave 

as predicted for an operational model, with changes in agonist efficacy (1/𝐾𝐸  in our model) 

resulting in a shift in maximal response and/or agonist potency. Importantly, although the 

inclusion of plasma protein can affect apparent potency of an agonist, it is not able to change 

the maximal response at saturating concentrations of ligand.  

In addition to these simulations, we have considered a number of methods for determining 

plasma protein affinities for compounds, which can potentially be employed in membrane or 

cell-based binding and functional assays. In order to determine 𝐾𝑃 it is possible to either 

directly fit experimental data to the cubic equation or perform utilise Schild analysis, where 

binding (or function) curves are constructed in the presence of increasing concentrations of 

plasma protein. Indeed, Schild analysis might be preferred, particularly when directly fitting 

functional data where estimation of KR and KE might be challenging (see Kenakin et al, 

2012). We have demonstrated using the prostacyclin IP receptor as a model system that this 

method can be applied to experimental radioligand binding data and that the resulting KP was 

comparable to that obtained using a more conventional method to determine drug binding to 

plasma proteins.  

Although this model can be very useful in determining affinity of compounds to serum 

proteins, there are a number of limitations that should be addressed. It is important to 

highlight that we have taken a reductionist approach, with the mathematical equations 

presented here only modeling the scenario where the drug binds to a single site on the 

plasma protein. As discussed in Trainor (2007) and Sjoholm et al. (1979) it is known that 

there are multiple binding sites on HSA, two of which are thought to predominate, designated 

site I, the warfarin binding site, and site II, the indole-benzodiazepine site (Sudlow et al., 

1975).  Site I is thought to bind mainly heterocyclic and negatively charged compounds, 
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whereas site II prefers small aromatic carboxylic acids.  Though it would be possible to 

extend this analysis to incorporate two binding sites on HSA, a similar approach to the one 

we have used to reduce the equilibrium equations to a single equation in [LR] results in a 

quartic equation. While the analytic solution of a quartic equation can be found, it is very 

complicated and so in practice it would be better to solve the equation numerically for given 

parameter values.  It should also be highlighted that the theoretical framework presented in 

this paper is applicable only to in-vitro studies measuring affinity to a single plasma protein at 

any one time and will not directly model the effect in vivo due to an increased number of 

additional proteins in blood. Finally, it is important to ensure that the assay system can 

tolerate variable concentrations of plasma protein. In some systems inclusion of high 

concentrations of serum may deplete other important molecules, such as cofactors or 

substrates required for enzymatic assays. Conversely, in signaling assays the exclusion of 

plasma protein may reduce cell viability over extended periods of time, complicating the 

interpretation of results. It is therefore critical to establish the sensitivity of the assay to 

variable plasma protein concentrations, which may limit the practical application of this 

method (also discussed by Rusnak et al., 2004).  

In summary, the model described here enables exploration of the impact of plasma proteins 

in simple assay systems and also provides several approaches to quantify the affinity of 

compounds for serum proteins. Importantly, it is possible to apply these approaches to 

commonly-used biochemical assays, enabling differentiation of highly bound compounds 

(>99.5 %) at an early stage of the drug discovery process, ultimately resulting in a better 

understanding of the structure activity relationship for plasma protein binding.  
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Table 1. 

 
 

Drug 𝐾𝑃 for protein 

(µM) 

% plasma protein 
unbound 

Estimated Unbound 
[Drug] (µM) 

% plasma protein 
binding 

0.001 0.00017 0.000017 99.9998 

0.01 0.00167 0.000167 99.9983 

0.1 0.01666 0.001666 99.9833 

1 0.16639 0.016639 99.8336 

10 1.63934 0.163934 98.3607 

100 14.28571 1.428571 85.7143 

1000 62.50000 6.250000 37.5000 

 

The relationship between the % plasma protein binding and binding affinity. % 

unbound based on the formula provided by Toutain and Bousquet-Melou (2002)  𝑓𝑢 =

𝐾𝑝/(𝐵𝑚𝑎𝑥 + 𝐾𝑝), assuming a 𝐵𝑚𝑎𝑥 or protein concentration of 600.  Unbound drug 

concentration was calculated based on the addition of 10M drug to plasma protein. 
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Figure legends 

Figure 1.  Graphical representation of the relationship between % plasma protein 

binding and protein binding affinity.  For simulation purposes the total concentration of 

ligand  ([𝐿]𝑇)  was fixed at 10µ𝑀 and the total plasma protein concentration was fixed at 

600M. 

Figure 2. Ligand-receptor occupancy simulations. (a) Simulation of the effect of 

decreasing receptor-ligand affinity on the concentration of ligand bound to receptor in the 

absence of plasma protein. (b) Simulation of the effect of decreasing receptor-ligand affinity 

on the concentration of ligand bound to receptor in the presence of plasma protein. The 

affinity of the ligand (𝐾𝑝) for the protein in this simulation is 0.1 µ𝑀 with the total 

concentration of protein added  [𝑃]𝑇 fixed at 15M (0.1%). (c) Simulation of the effects of 

decreasing ligand-protein affinity 𝐾𝑝 on the concentration of ligand bound to receptor. In this 

simulation the total concentration of plasma protein ([𝑃]𝑇) added was 15 µ𝑀, and the affinity 

for the receptor was  𝐾𝑅  =  1 𝑛𝑀. In all the above simulations the total receptor concentration 

[𝑅]𝑇 was fixed at 0.1 𝑛𝑀. 

Figure 3. Ligand-protein occupancy simulations. Simulation of the effects of decreasing 

affinity of ligand for plasma protein 𝐾𝑝 on the concentration of ligand bound to plasma 

protein. In the simulations, [𝑃]𝑇 = 15 µ𝑀,  𝐾𝑅 = 1 𝑛𝑀 and [𝑅]𝑇 = 0.1𝑛𝑀. 

Figure 4. Free ligand predictions with varying plasma protein concentrations. 

Simulation of the effects of increasing plasma protein concentration on the concentration of 

free ligand available [L]. The black line corresponds to total added ligand in the absence of 

protein or receptor. In the simulations, 𝐾𝑝 = 1 µ𝑀,  𝐾𝑅 = 1𝑛𝑀 and [𝑅]𝑇 = 0.1 𝑛𝑀.  

 

Figure 5. Comparing ligand-receptor and ligand-plasma protein occupancy 

simulations for compounds with high and low plasma protein affinity 

(a) When ligand has a high affinity for plasma protein. Relationship between total ligand 

added and the concentrations of ligand bound to receptor, ligand bound to protein and free 

ligand for the parameter configurations [𝑃]𝑇 = 15 µ𝑀,  𝐾𝑅 = 1 𝑛𝑀, 𝐾𝑃 = 1 µ𝑀,  [𝑅]𝑇 = 0.1 𝑛𝑀. 

(b) When ligand has a low affinity for plasma protein. Relationship between total ligand 

added and the concentrations of ligand bound to receptor, ligand bound to protein and free 

ligand for the same parameter configurations as (a), except  𝐾𝑃 = 100 µ𝑀. 

Figure 6. Schild analysis can be used to determine ligand-protein affinity estimates 

using binding data. 



26 
 

(a) Simulation of the effects of increasing the concentration of protein on the concentration of 

ligand bound to receptor for the parameter configuration  𝐾𝑅 = 1 𝑛𝑀,  𝐾𝑃 = 1 µ𝑀,  [𝑅]𝑇 =

0.1 𝑛𝑀. (b) Schild plot constructed by calculating dose ratios (DR) from the ligand-receptor 

occupancy plot. The affinity for the protein can be determined from the intercept on the 𝑥-

axis, 𝐾𝑃 = 10−6 𝑀 or 𝐾𝑃 = 1 µ𝑀. 

Figure 7. Situations where the affinity for protein exceeds the affinity for the receptor. 

Simulation of the effects of increasing the concentration of protein on the concentration of 

ligand bound to receptor. Parameter configurations are 𝐾𝑃 = 0.1 µ𝑀, 𝐾𝑅 = 1 µ𝑀,  [𝑅]𝑇 =

0.1 𝑛𝑀.  

Figure 8. Practical application of Schild analysis to a radioligand binding assay. 

Saturation binding of [3H]-RO-1138452 to CHO-IP cell membranes in the presence of 

increasing concentrations of HSA with corresponding Schild plot. (a) Increasing 

concentrations of [3H]-RO-1138452 were incubated with CHO-IP cell membranes 

(2.5µg/well) and the indicated concentrations of SA (HSA) at room temperature. As the total 

binding varied, data are shown as mean ± range from a representative of at least three 

independent experiments performed in duplicate and plotted as the percentage of specific 

bound. (b) For each set of experiments the mean of the data at each SA concentration was 

taken and the log (DR-1) calculated. A Schild plot was constructed from this data using a first 

order polynomial (straight line) equation, with slopes not significantly different from unity, 

from which pKp values of [3H]-RO-1138452 for HSA were determined from the intercept at 

the x-axis. 

Figure 9. Simulations showing the effect of including plasma proteins in a functional 

assay using Operational modeling.  Effect of changing the parameter 𝐾𝐸 on functional 

effect curves. (a) In the absence of plasma protein (parameter values  𝐾𝑅 = 1 𝑛𝑀, 𝐾𝑃 =

1 µ𝑀,  [𝑅]𝑇 = 0.1 𝑛𝑀,  𝐸𝑚𝑎𝑥 = 100) and (b) with total protein [𝑃]𝑇 fixed at 15M for the same 

parameter values as defined above. 

Figure 10. Schild analysis can be used to determine ligand-protein affinity estimates 

from functional data. (a) Operational model with increasing concentrations of protein for the 

parameter configurations  𝐾𝑃 = 1 µ𝑀, 𝐾𝐸 = 10 𝑝𝑀, 𝐾𝑅 = 1 𝑛𝑀,  [𝑅]𝑇 = 0.1 𝑛𝑀, 𝐸𝑚𝑎𝑥 = 100. 

(b) The resulting Schild plot shows that the affinity for the protein can be determined from the 

intercept on the 𝑥-axis, 𝐾𝑃 = 10−6 𝑀 or 𝐾𝑃 = 1 µ𝑀.  
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Appendix 1: 

From a mathematical perspective, equation (8) is only valid for when [𝐿𝑅] ≠ [𝑅]𝑇 and here 

we show how this must be the case. We assume that [𝑅]𝑇 ≠ 0 and we want to show that any 

solution of equations (1)-(5) must satisfy [𝐿𝑅] ≠ [𝑅]𝑇. To do this, assume the contrary, 

namely that [𝐿𝑅] = [𝑅]𝑇. In this case, it follows from (5) that [𝑅] = 0 and substituting [𝐿𝑅] =

[𝑅]𝑇 and [𝑅] = 0 into (1) that 𝐾𝑅 = 0. However, this is not the case, which implies that our 

original assumption must be incorrect and so [𝐿𝑅] ≠ [𝑅]𝑇.  

Appendix 2: 

The cubic equation we are considering is given by 

𝐴𝑥3 + 𝐵𝑥2 + 𝐶𝑥 + 𝐷 = 0         (A1) 

where 

𝐴 = 𝐾𝑅 − 𝐾𝑃 

𝐵 = 𝐾𝑃𝐾𝑅 + 2 𝐾𝑃[𝑅]𝑇 + 𝐾𝑃[𝐿]𝑇 + 𝐾𝑅[𝑃]𝑇 − 𝐾𝑅
2 − 𝐾𝑅[𝐿]𝑇 − 𝐾𝑅[𝑅]𝑇 

                      𝐶 = [𝑅]𝑇(−𝐾𝑃𝐾𝑅 − 𝐾𝑃[𝑅]𝑇 − 2 𝐾𝑃 [𝐿]𝑇 − 𝐾𝑅[𝑃]𝑇 + 𝐾𝑅[𝐿]𝑇) 

                      𝐷 = 𝐾𝑃[𝐿]𝑇[𝑅]𝑇
2  .  

In lead optimization programs it is almost always the case that the affinity of a compound for 

the receptor is higher than that for plasma protein, so if we assume that 𝐾𝑃 > 𝐾𝑅 then we 

note that 𝐴 < 0, 𝐵 > 0, 𝐶 < 0, 𝐷 > 0. Using Descartes' Rule of Signs (Meserve, 1982) it 

follows that the cubic equation (A1) has zero negative roots and either one or three positive 

roots. Clearly, if there is only one positive root, then the other two roots must be complex. 

Using the equation for [𝐿]𝑇 as given in (11), namely 

 

[𝐿]𝑇 = [[𝐿𝑅](𝐾𝑃𝐾𝑅[𝑅]𝑇 − 𝐾𝑃𝐾𝑅[𝐿𝑅] − 2𝐾𝑃[𝑅]𝑇[𝐿𝑅] + 𝐾𝑃[𝐿𝑅]2 + 𝐾𝑅[𝑃]𝑇[𝑅]𝑇 + 𝐾𝑃[𝑅]𝑇
2 +

𝐾𝑅
2[𝐿𝑅] − 𝐾𝑅[𝐿𝑅][𝑃]𝑇 − 𝐾𝑅[𝐿𝑅]2 + 𝐾𝑅[𝐿𝑅][𝑅]𝑇)]  /  ([𝑅]𝑇 − [[𝐿𝑅])(−𝐾𝑃[𝐿𝑅] + 𝐾𝑅[𝐿𝑅] +

𝐾𝑃[𝑅]𝑇),  

and assuming that 𝐾𝑅, 𝐾𝑃, [𝑅]𝑇 ≠ 0, it can be shown that  

𝑙𝑖𝑚[𝐿𝑅]→0 [𝐿]𝑇 = 0 ,  𝑙𝑖𝑚[𝐿𝑅][𝑅]𝑇
 [𝐿]𝑇 = ∞,    0 <  

𝑑[𝐿]𝑇

𝑑[𝐿𝑅]
<  ∞  if  0 < [𝐿𝑅] <  [𝑅]𝑇. 

The last result on the derivative can be shown by considering separately the numerator and 

denominator of the derivative. The denominator is zero when  [𝐿𝑅] =  [𝑅]𝑇 but is non-zero in 
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the given range for [𝐿𝑅]. The numerator is a quartic function of [𝐿𝑅]. Descartes’ Rule of 

Signs (Meserve, 1982) can be used to show that this quartic has no roots with [𝐿𝑅] <  [𝑅]𝑇 

and hence there are no sign changes of the derivative in the given interval, as claimed. 

It follows immediately from these results that, for a given [𝐿]𝑇 (with 0 ≤ [𝐿]𝑇 <  ∞), there is 

precisely one solution of the cubic equation (A1) with 0 ≤ [𝐿𝑅] <  [𝑅]𝑇 and since the cubic 

equation has no negative roots, this must be the smallest root of the cubic. 

The solutions of the cubic equation (A1) can be found (Weisstein) by first dividing the 

equation through by 𝐴, giving  

𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

where 𝑥 = [𝐿𝑅], 𝑎 =
𝐵

𝐴
 , 𝑏 =

𝐶

𝐴
 , 𝑐 =

𝐷

𝐴
 .  

We define the parameters  

𝑞 =
3𝑏−𝑎2

3
 , 𝑟 =

2𝑎3−9𝑎𝑏+27𝑐

27
,      𝑑 =

𝑞3

27
+

𝑟2

4
      

The solutions of the cubic can be classified by the value of the parameter 𝑑. In particular 

 

Case 1:  𝑑 = 0: 3 real roots - 2 equal 

𝑥1 = 2 (
−𝑟

2
)

1
3⁄

−
𝑎

3
 

𝑥2 = 𝑥3 = − (
−𝑟

2
)

1
3⁄

−
𝑎

3
 

 

Case 2:   𝑑 > 0: 1 real root 

   𝑥1 = (−
𝑟

2
+ 𝑑

1
2⁄ )

1
3⁄
+ (−

𝑟

2
− 𝑑

1
2⁄ )

1
3⁄

− 
𝑎

3
 

Case 3:   𝑑 < 0: 3 real roots 

 

 𝑥1 = 2√
−𝑞

3
cos (

𝜃

3
) −

𝑎

3
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 𝑥2 = 2√
−𝑞

3
cos (

𝜃+2𝜋

3
) −

𝑎

3
 

 𝑥3 = 2√
−𝑞

3
cos (

𝜃+4𝜋

3
) −

𝑎

3
    

 where  𝜃 = cos−1 ((
3𝑟

2𝑞
) . √

−3

𝑞
). 

All the examples we consider have 𝑑 < 0 and hence there are three real roots to the cubic. 

The analysis given above showed that we require the smallest of the roots and it can be 

verified that this is the root 𝑥2. 

 

To facilitate the practical application of this solution it is presented below in Prism language: 

;Y corresponds to the complex [LR] 

;Kr is the equilibrium dissociation constant for the ligand binding to receptor 

;Kp is the equilibrium dissociation constant for the ligand binding to protein 

;X is the total added ligand concentration given in log units. 

;Rtot is the total added receptor concentration. 

;Ptot is the total added protein concentration 

 

a=(Kp*Kr+2*Kp*Rtot+Kp*10^X+Kr*Ptot-Kr*Kr-Kr*10^X-Kr*Rtot)/(Kr-Kp) 

b=(Rtot*(-Kp*Kr-Kp*Rtot-2*Kp*10^X-Kr*Ptot+Kr*10^X))/(Kr-Kp) 

c=(Kp*10^X*Rtot^2)/(Kr-Kp) 

 

q=(3b-a^2)/3 

r=(2*a^3-9*a*b+27*c)/27 

d=q^3/27 + r^2/4 

theta=arccos(((3*r)/(2*q))*sqrt(-3/q)) 
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Y=2*sqrt(-q/3)*cos((theta+2*Pi)/3)-a/3 

 

Appendix 3: Explicit solution of [𝐿𝑃] and [𝐿] 

Solution of [𝐿𝑃]: 

By suitable manipulation of equations (4)-(7), one can also derive cubic equations for the 

concentrations of ligand bound to protein and free ligand. The explicit cubic expression for 

the concentration of ligand bound to protein in this scenario is 

𝐸[𝐿𝑃]3 + 𝐹[𝐿𝑃]2 + 𝐺[𝐿𝑃] + 𝐻 = 0 

where 

𝐸 = 𝐾𝑃 − 𝐾𝑅 

𝐹 = 𝐾𝑃𝐾𝑅 + 2 𝐾𝑅[𝑃]𝑇 + 𝐾𝑅[𝐿]𝑇 + 𝐾𝑃[𝑅]𝑇 − 𝐾𝑃
2 − 𝐾𝑃[𝐿]𝑇 − 𝐾𝑃[𝑃]𝑇 

𝐺 = −𝐾𝑃𝐾𝑅[𝑃]𝑇 − 𝐾𝑅[𝑃]𝑇
2 − 2 𝐾𝑅 [𝐿]𝑇[𝑃]𝑇 − 𝐾𝑃[𝑃]𝑇[𝑅]𝑇 + 𝐾𝑃[𝐿]𝑇[𝑃]𝑇 

𝐻 = 𝐾𝑅[𝐿]𝑇[𝑃]𝑇
2  . 

One can perform a similar analysis as used previously to determine the physiologically 

relevant root but in this case, the variables 𝑎, 𝑏 and c are defined by 𝑎 = 𝐹/𝐸, 𝑏 = 𝐺/𝐸 and 

𝑐 = 𝐻/𝐸. The variables 𝑞, 𝑟 and 𝜃 are then defined as in Appendix 2. For our purposes, the 

relevant root is given by  

[𝐿𝑃] = 2√
−𝑞

3
cos (

𝜃 + 4𝜋

3
) −

𝑎

3
 

Solution of [𝐿]: 

The final quantity to consider in the problem is the free concentration of ligand remaining 

after all the interactions. Again, one can formulate a cubic equation of the form 

𝐽[𝐿]3 + 𝐾[𝐿]2 + 𝑀[𝐿] + 𝑁 = 0 

where 

𝐽 = −1 

𝐾 = [𝐿]𝑇 − [𝑅]𝑇 − 𝐾𝑅 − 𝐾𝑃 − [𝑃]𝑇 

𝑀 = 𝐾𝑃[𝐿]𝑇 + 𝐾𝑅[𝐿]𝑇 −  𝐾𝑃[𝑅]𝑇 − 𝐾𝑅[𝑃]𝑇 − 𝐾𝑃𝐾𝑅 
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𝑁 = 𝐾𝑅𝐾𝑃[𝐿]𝑇 

to quantify this concentration in terms of the known parameters. 

In this case, since 𝐽 = −1, we have the new definitions 𝑎 = −𝐾, 𝑏 = −𝑀 and 𝑐 = −𝑁. As 

before, the variables 𝑞, 𝑟 and 𝜃 are then defined as in Appendix 2. The physiologically 

relevant root is found to be: 

[𝐿] = 2√
−𝑞

3
cos (

𝜃

3
) −

𝑎

3
 

 

Appendix 4: 

We are considering the situation where the receptor and protein compete to bind to the 

ligand: 

  

 

 

 

 

At equilibrium, equations (1) and (2) hold. Using equations (1) and (5), we obtain 

[𝐿𝑅]

[𝑅]𝑇
=

1
𝐾𝑅

[𝐿][𝑅]

[𝑅] + [𝐿𝑅]
=

1
𝐾𝑅

[𝐿][𝑅]

[𝑅] +
1

𝐾𝑅
[𝐿][𝑅]

=

1
𝐾𝑅

[𝐿]

1 +
1

𝐾𝑅
[𝐿]

.                                                       (𝐴2) 

Now using equations (1), (2) and (3), we have 

[𝐿]𝑇 = [𝐿] + [𝐿𝑅] + [𝐿𝑃] = [𝐿] +
1

𝐾𝑅

[𝐿][𝑅] +
1

𝐾𝑃

[𝐿][𝑃] = [𝐿] (1 +
1

𝐾𝑅

[𝑅] +
1

𝐾𝑃

[𝑃]) 

. 

Hence  [𝐿] =
[𝐿]𝑇

(1+
1

𝐾𝑅
[𝑅]+

1

𝐾𝑃
[𝑃])

=
[𝐿]𝑇𝐾𝑅𝐾𝑃

(𝐾𝑅𝐾𝑃+𝐾𝑃[𝑅]+𝐾𝑅[𝑃])
 and substituting into (A2) gives the response 

[𝐿𝑅]

[𝑅]𝑇
=

[𝐿]𝑇𝐾𝑃

(𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅] + 𝐾𝑅[𝑃]) (1 +
[𝐿]𝑇𝐾𝑃

𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅] + 𝐾𝑅[𝑃]
)
 

=
[𝐿]𝑇𝐾𝑃

𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅] + 𝐾𝑅[𝑃] + [𝐿]𝑇𝐾𝑃
 

 

[L]           [R] 

 

 

𝐾𝑅 

[P] 

𝐾𝑃 
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Considering no protein (i.e. [𝑃] = 0), and denoting the free and bound concentrations with a 

prime, we have the response 

[𝐿𝑅]′

[𝑅]𝑇
=

[𝐿]𝑇𝐾𝑃

𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅]′ + [𝐿]𝑇𝐾𝑃
 

For equal responses with and without inclusion of protein (i.e. [𝐿𝑅]′ = [𝐿𝑅]) it follows from (5) 

that [𝑅] = [𝑅]′ and then 

[𝐿]𝑇
′ 𝐾𝑃

𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅] + 𝐾𝑅[𝑃] + [𝐿]𝑇
′ 𝐾𝑃

=
[𝐿]𝑇𝐾𝑃

𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅] + [𝐿]𝑇𝐾𝑃
 

Defining 𝐷𝑅 = [𝐿]𝑇
′ /[𝐿]𝑇 and solving for 𝐷𝑅 provides the following solution: 

𝐷𝑅 =
𝐾𝑅𝐾𝑃 + 𝐾𝑃[𝑅] + 𝐾𝑅[𝑃]

𝐾𝑃(𝐾𝑅 + [𝑅])
 

which can be simplified and rearranged as follows: 

𝐷𝑅 − 1 =
𝐾𝑅[𝑃]

𝐾𝑃(𝐾𝑅 + [𝑅])
 . 

Taking logs then gives 

log(𝐷𝑅 − 1) = log[𝑃] − log 𝐾𝑃 + log (
𝐾𝑅

𝐾𝑅 + [𝑅]
).                                                   (𝐴3) 

This implies that [𝑅] affects the Schild analysis by the factor log (
𝐾𝑅

𝐾𝑅+[𝑅]
). Note however, that 

when [𝑅] ≪  𝐾𝑅, then [𝑅]/𝐾𝑅 ≪ 1 and so 

 log (
𝐾𝑅

𝐾𝑅 + [𝑅]
) = log (

1

1 + [𝑅]/𝐾𝑅
) = −

[𝑅]

𝐾𝑅
+ 𝑂 ((

[𝑅]

𝐾𝑅
)

2

) 

Thus, assuming that [𝑅]/𝐾𝑅 is negligible compared to log 𝐾𝑝 then we can simplify (A3) to 

log(𝐷𝑅 − 1) = log[𝑃] − log 𝐾𝑃 

which gives the linear relationship between log (𝐷𝑅 − 1) and log [𝑃] from which the constant 

𝐾𝑃 can be found. 


