6 research outputs found

    The 3β€² Region of the Chicken Hypersensitive Site-4 Insulator Has Properties Similar to Its Core and Is Required for Full Insulator Activity

    Get PDF
    Chromatin insulators separate active transcriptional domains and block the spread of heterochromatin in the genome. Studies on the chicken hypersensitive site-4 (cHS4) element, a prototypic insulator, have identified CTCF and USF-1/2 motifs in the proximal 250 bp of cHS4, termed the β€œcore”, which provide enhancer blocking activity and reduce position effects. However, the core alone does not insulate viral vectors effectively. The full-length cHS4 has excellent insulating properties, but its large size severely compromises vector titers. We performed a structure-function analysis of cHS4 flanking lentivirus-vectors and analyzed transgene expression in the clonal progeny of hematopoietic stem cells and epigenetic changes in cHS4 and the transgene promoter. We found that the core only reduced the clonal variegation in expression. Unique insulator activity resided in the distal 400 bp cHS4 sequences, which when combined with the core, restored full insulator activity and open chromatin marks over the transgene promoter and the insulator. These data consolidate the known insulating activity of the canonical 5β€² core with a novel 3β€² 400 bp element with properties similar to the core. Together, they have excellent insulating properties and viral titers. Our data have important implications in understanding the molecular basis of insulator function and design of gene therapy vectors

    Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies

    No full text
    Safely achieving long-term engraftment of genetically modified hematopoietic stem cells (HSCs) that maintain therapeutic transgene expression is the benchmark for successful application of gene therapy for hemoglobinopathies. We used the pigtailed macaque HSC transplantation model to ascertain the long-term safety and stability of a Ξ³-globin lentivirus vector. We observed stable gene-modified cells and fetal hemoglobin expression for 3 years. Retrovirus integration site (RIS) analysis spanning 6 months to 3.1 years revealed vastly disparate integration profiles, and dynamic fluctuation of hematopoietic contribution from different gene-modified HSC clones without evidence for clonal dominance. There were no perturbations of the global gene-expression profile or expression of genes within a 300 kb region of RIS, including genes surrounding the most abundantly marked clones. Overall, a 3-year long follow-up revealed no evidence of genotoxicity of the Ξ³-globin lentivirus vector with multilineage polyclonal hematopoiesis, and HSC clonal fluctuations that were not associated with transcriptome dysregulation

    Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13

    No full text
    Airway hyperresponsiveness (AHR) affects 55%-77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf-/- mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD.status: publishe
    corecore