1,057 research outputs found

    Optical Bistability in Nonlinear Optical Coupler with Negative Index Channel

    Full text link
    We discuss a novel kind of nonlinear coupler with one channel filled with a negative index material (NIM). The opposite directionality of the phase velocity and the energy flow in the NIM channel facilitates an effective feedback mechanism that leads to optical bistability and gap soliton formation

    Long-lived quantum coherence in photosynthetic complexes at physiological temperature

    Full text link
    Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies further show that this process is equivalent to a quantum random walk algorithm (5-8). This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present the first evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to perform a rudimentary quantum computational operation. This data proves that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations. The persistence of quantum coherence in a dynamic, disordered system under these conditions suggests a new biomimetic strategy for designing dedicated quantum computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file

    The cyanobacterial ribosomal-associated protein LrtA from Synechocystis sp. PCC 6803 is an oligomeric protein in solution with chameleonic sequence properties

    Get PDF
    The LrtA protein of Synechocystis sp. PCC 6803 intervenes in cyanobacterial post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family of proteins, involved in protein synthesis. In this work, we studied the conformational preferences and stability of isolated LrtA in solution. At physiological conditions, as shown by hydrodynamic techniques, LrtA was involved in a self-association equilibrium. As indicated by Nuclear Magnetic Resonance (NMR), circular dichroism (CD) and fluorescence, the protein acquired a folded, native-like conformation between pH 6.0 and 9.0. However, that conformation was not very stable, as suggested by thermal and chemical denaturations followed by CD and fluorescence. Theoretical studies of its highly-charged sequence suggest that LrtA had a Janus sequence, with a context-dependent fold. Our modelling and molecular dynamics (MD) simulations indicate that the protein adopted the same fold observed in other members of the HPF family ( - - - - - ) at its N-terminal region (residues 1–100), whereas the C terminus (residues 100–197) appeared disordered and collapsed, supporting the overall percentage of overall secondary structure obtained by CD deconvolution. Then, LrtA has a chameleonic sequence and it is the first member of the HPF family involved in a self-association equilibrium, when isolated in solution.Ministerio de Economía y Competitividad CTQ2015-64445-RMinisterio de Economía y Competitividad BIO2016-78020-RMinisterio de Economía y Competitividad FIS2014-52212-RMinisterio de Economía y Competitividad BIO2016-75634-PFundación Séneca 19353/PI/1

    Cepas del género Penicillium aisladas en Cataluña

    Get PDF
    En el presente trabajo intentamos la clasificación de 133 cepas pertenecientes a 37 especies del género Penicillium Link, aisladas en Cataluña, así como la descripción macro y microscópica de todas ellas para su posible inclusión en un índice de la flora micológica de nuestro país

    Failure analysis of the fasten system of wheels used in mining pickup trucks

    Get PDF
    Regardless of their specific applications, all the vehicles used in mining operations are subjected to severe working conditions that reduce in a considerable amount, their active in-service life. In this work, the causes that promote failure of the fasten system and subsequent ejection of the wheels of passenger pickup trucks used in open-pit mines are analysed. By means of scanning electron microscopy, optical microscopy analyses and hardness tests, it was found that failure of the fasten system is characterised by a series of synergetic steps that include, the plastic deformation of the lug nuts caused by deficient tightening practices, fatigue and plastic deformation of the bolts. When combined, these phenomena leaded to the formation of cracks that propagated in the radial direction of these elements. The reasons that promote the development of this kind of failure are presented and discussed in this investigation. © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Secuenciación del ITS-1 del ADN ribosomal de Galba truncatula (Gastropoda, Lymnaeidae) y su impacto potencial en la transmisión de la fascioliasis en Mendoza, Argentina

    Get PDF
    Sequencing of the rDNA ITS–1 proved that the lymnaeid snail species Galba truncatula is present in Argentina and that it belongs to the haplotype HC, the same as that responsible for the fascioliasis transmission in the human hyperendemic area with the highest human prevalences and intensities known, the Northern Bolivian Altiplano.La secuenciación del ITS–1 del ADNr demostró que la especie de gasterópodo lymnaeido Galba truncatula se encuentra en Argentina y que pertenece al haplotipo HC, el mismo responsable de la transmisión de la fascioliasis en el área de hiperendemia humana con las mayores prevalencias e intensidades de fascioliasis conocidas, el Altiplano Norte Boliviano

    Importance of the Voltage Dependence of Cardiac Na/K ATPase Isozymes

    Get PDF
    AbstractCardiac cells express more than one isoform of the Na, K-ATPase (NKA), the heteromeric enzyme that creates the Na+ and K+ gradients across the plasmalemma. Cardiac isozymes contain one catalytic α-subunit isoform (α1, α2, or α3) associated with an auxiliary β-subunit isoform (β1 or β2). Past studies using biochemical approaches have revealed minor kinetic differences between isozymes formed by different α-β isoform combinations; these results make it difficult to understand the physiological requirement for multiple isoforms. In intact cells, however, NKA enzymes operate in a more complex environment, which includes a substantial transmembrane potential. We evaluated the voltage dependence of human cardiac NKA isozymes expressed in Xenopus oocytes, and of native NKA isozymes in rat ventricular myocytes, using normal mammalian physiological concentrations of Na+o and K+o. We demonstrate that although α1 and α3 pumps are functional at all physiologically relevant voltages, α2β1 pumps and α2β2 pumps are inhibited by ∼75% and ∼95%, respectively, at resting membrane potentials, and only activate appreciably upon depolarization. Furthermore, phospholemman (FXYD1) inhibits pump function without significantly altering the pump’s voltage dependence. Our observations provide a simple explanation for the physiological relevance of the α2 subunit (∼20% of total α subunits in rat ventricle): they act as a reserve and are recruited into action for extra pumping during the long-lasting cardiac action potential, where most of the Na+ entry occurs. This strong voltage dependence of α2 pumps also helps explain how cardiotonic steroids, which block NKA pumps, can be a beneficial treatment for heart failure: by only inhibiting the α2 pumps, they selectively reduce NKA activity during the cardiac action potential, leading to an increase in systolic Ca2+, due to reduced extrusion through the Na/Ca exchanger, without affecting resting Na+ and Ca2+ concentrations

    Sistema para Sensoriamento de Potássio no Solo.

    Get PDF
    bitstream/CNPDIA/10447/1/BPD09_2004.pd
    corecore