33 research outputs found

    Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain)

    Get PDF
    Urban air pollution is one of the most important environmental problems nowadays. Understanding urban pollution is rather challenging due to different factors that produce a strongly heterogeneous pollutant distribution within streets. Observed concentrations depend on processes occurring at a wide range of spatial and temporal scales, complex wind flow and turbulence patterns induced by urban obstacles and irregular traffic emissions. The main objective of this paper is to model particulate matter dispersion at microscale while considering the effects of mesoscale processes. Computational Fluid Dynamic (CFD) PM10 simulations were performed taking into account high spatial resolution traffic emissions from a microscale traffic model and inlet vertical profiles of meteorological variables from Weather Research and Forecasting (WRF) model. This modelling system is evaluated by using meteorological and PM10 concentration data from intensive experimental campaigns carried out on 25th February and 6th July, 2015 in a real urban traffic hot-spot in Madrid. The effect of uncertainties in the inlet profiles from mesoscale input data on microscale results is assessed. Additionally, the importance of the sensible surface heat fluxes (SHF) provided by WRF and the selection of an appropriate turbulent Schmidt number in the dispersion equation are investigated. The main conclusion is that the modelling system accurately reproduces PM10 dispersion imposing appropriate inputs (meteorological variables and SHF) and a suitable turbulent Schmidt number. Better agreement is found for simulation with a low turbulent Schmidt number. This approach improves the standard microscale modelling alone because more realistic boundary conditions and mesoscale processes are considered

    Tecnología de la elaboración de quesos: experiencias de investigación aplicada y capacitación para estudiantes, técnicos, pequeños productores y la comunidad en general

    Get PDF
    Con un volumen de unos 11.300 millones de litros anuales, la Argentina es el segundo productor de leche de Latinoamérica, luego de Brasil. Los quesos constituyen el destino industrial más importante de la leche en nuestro país. Con los objetivos de 1) difundir los aspectos más salientes de los procesos de transformación de leche en productos elaborados para el público en general y 2) realizar aportes en la mejora de los procesos de producción de quesos para pequeños productores y técnicos del sector, hemos venido realizando en los últimos años diferentes actividades desde el Laboratorio de Investigación en Productos Agroindustriales (LIPA) de la Facultad de Ciencias Agrarias y Forestales de la Universidad Nacional de La Plata. Así, se organizaron talleres y cursos de capacitación para diferentes grupos: a) alumnos de educación inicial interesados en conocer los fundamentos del proceso de transformación de leche en queso, b) estudiantes de colegios secundarios agropecuarios con interés en profundizar en aspectos de calidad e industrialización de leche, c) estudiantes de la carrera de biotecnología de la UNLP con curiosidad por conocer cómo herramientas de interés desarrolladas biotecnológicamente (cuajo, cultivos iniciadores) son empleadas en la industria, d) pequeños productores y técnicos con interés de mejorar sus productos y servicios. Asimismo, en el laboratorio se llevan adelante investigaciones aplicadas tendientes a determinar la influencia de factores de proceso sobre la calidad y estabilidad de quesos. Algunos de los aspectos analizados incluyen la influencia del nivel de grasa de la leche sobre la calidad sensorial, composición de quesos, la optimización de la obtención de ricota a partir de leche, la influencia de la intensidad de lavado de la masa sobre las propiedades funcionales de queso cremoso. La combinación de investigación aplicada y actividades de capacitación y divulgación resulta una estrategia indispensable para poder transferir los conocimientos disponibles en las instituciones universitarias al medio así como para retroalimentar a la universidad con problemáticas reales y los saberes del sector productivo

    Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: an overview of the DAURE campaign

    Get PDF
    DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol

    ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments

    Get PDF
    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall – early-winter period (November–December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36 % for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recommendations about best calibration practices, standardized data processing, and data treatment.JRC.H.2-Air and Climat

    ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Get PDF
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.JRC.H.2-Air and Climat

    Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    Get PDF
    BACKGROUND: Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. METHODS AND PRINCIPAL FINDINGS: RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. CONCLUSIONS: Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption

    The risks of acute exposure to black carbon in Southern Europe: Results from the med-particles project

    Get PDF
    Objectives: While several studies have reported associations of daily exposures to PM2.5 (particles less than 2.5 μm) with mortality, few studies have examined the impact of its constituents such as black carbon (BC), which is also a significant contributor to global climate change. Methods: We assessed the association between daily concentrations of BC and total, cardiovascular and respiratory mortality in two southern Mediterranean cities. Daily averages of BC were collected for 2 years in Barcelona, Spain and Athens, Greece. We used case-crossover analysis and examined single and cumulative lags up to 3 days. Results: We observed associations between BC and all mortality measures. For a 3-day moving average, cardiovascular mortality increased by 4.5% (95% CI 0.7 to 8.5) and 2.0% (95% CI 0 to 4.0) for an interquartile change in BC in Athens and Barcelona, respectively. Considerably higher effects for respiratory mortality and for those above age 65 were observed. In addition, BC exhibited much greater toxicity per microgram than generic PM2.5. Conclusions: Our findings suggest that BC, derived in western industrialised nations primarily from diesel engines and biomass burning, poses a significant burden to public health, particularly in European cities with high-traffic density.Peer reviewe

    Particulate emissions from the co-combustion of forest biomass and sewage sludge in a bubbling fluidised bed reactor

    No full text
    In the present study, particulate emissions from the co-combustion of forest biomass residues with sewage sludge in a pilot-scale bubbling fluidised bed combustor were characterised. The combustion flue gas was exhausted to the atmosphere after passing through a cyclone separator. Physical-chemical characteristics of the particles were studied: i) morphology and aerosol size, surface and volume distributions before the cyclone and ii) chemical composition (carbonates, water soluble-inorganic ions, organic and elemental carbon) before and after the cyclone. Chemical composition data were used to calculate aerosol density and refractive index. Aerosols showed a unimodal size distribution with a geometric mean diameter of 2.25 ± 0.02 μm and a geometric standard deviation of 1.27 ± 0.01. The surface and volume mean diameters were 2.64 ± 0.02 μm and 2.91 ± 0.05 μm, respectively. Water-soluble inorganic ions were predominant in the fine particle fraction (PM2.5). The filters were loaded of crystallised mineral particles. The analysis revealed a dominance of calcium carbonate/oxide and halide (NaCl or KCl), sulphate and aluminosilicate nanocrystals forming larger mixed aggregates.This work was supported by Portuguese Science Foundation (FCT) through the projects PTDC/AAC-AMB/098112/2008 Bias-to-soil — Biomass ashes: Characteristics in relation to its origin, treatment and application on soil and PTDC/AMB/65706/2006 (BIOEMI). The electron microscopy analyses were conducted at CNME-UCM through the AEROCLIMA project (Fundación Ramón Areces). Ana I. Calvo acknowledges the pos-doc grant SFRH/BPD/64810/2009 from the FCT. We would also like to thank Diana Patoilo (University of Aveiro, Portugal) for supporting the chromatographic analyses, and Véronique Pont (University of Toulouse, France) and Darrel Baumgardner (Droplet Measurement Technologies, Boulder) for their valuable comments.publishe
    corecore