29 research outputs found

    Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain)

    Get PDF
    Urban air pollution is one of the most important environmental problems nowadays. Understanding urban pollution is rather challenging due to different factors that produce a strongly heterogeneous pollutant distribution within streets. Observed concentrations depend on processes occurring at a wide range of spatial and temporal scales, complex wind flow and turbulence patterns induced by urban obstacles and irregular traffic emissions. The main objective of this paper is to model particulate matter dispersion at microscale while considering the effects of mesoscale processes. Computational Fluid Dynamic (CFD) PM10 simulations were performed taking into account high spatial resolution traffic emissions from a microscale traffic model and inlet vertical profiles of meteorological variables from Weather Research and Forecasting (WRF) model. This modelling system is evaluated by using meteorological and PM10 concentration data from intensive experimental campaigns carried out on 25th February and 6th July, 2015 in a real urban traffic hot-spot in Madrid. The effect of uncertainties in the inlet profiles from mesoscale input data on microscale results is assessed. Additionally, the importance of the sensible surface heat fluxes (SHF) provided by WRF and the selection of an appropriate turbulent Schmidt number in the dispersion equation are investigated. The main conclusion is that the modelling system accurately reproduces PM10 dispersion imposing appropriate inputs (meteorological variables and SHF) and a suitable turbulent Schmidt number. Better agreement is found for simulation with a low turbulent Schmidt number. This approach improves the standard microscale modelling alone because more realistic boundary conditions and mesoscale processes are considered

    Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: an overview of the DAURE campaign

    Get PDF
    DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol

    The risks of acute exposure to black carbon in Southern Europe: Results from the med-particles project

    Get PDF
    Objectives: While several studies have reported associations of daily exposures to PM2.5 (particles less than 2.5 μm) with mortality, few studies have examined the impact of its constituents such as black carbon (BC), which is also a significant contributor to global climate change. Methods: We assessed the association between daily concentrations of BC and total, cardiovascular and respiratory mortality in two southern Mediterranean cities. Daily averages of BC were collected for 2 years in Barcelona, Spain and Athens, Greece. We used case-crossover analysis and examined single and cumulative lags up to 3 days. Results: We observed associations between BC and all mortality measures. For a 3-day moving average, cardiovascular mortality increased by 4.5% (95% CI 0.7 to 8.5) and 2.0% (95% CI 0 to 4.0) for an interquartile change in BC in Athens and Barcelona, respectively. Considerably higher effects for respiratory mortality and for those above age 65 were observed. In addition, BC exhibited much greater toxicity per microgram than generic PM2.5. Conclusions: Our findings suggest that BC, derived in western industrialised nations primarily from diesel engines and biomass burning, poses a significant burden to public health, particularly in European cities with high-traffic density.Peer reviewe

    Particulate emissions from the co-combustion of forest biomass and sewage sludge in a bubbling fluidised bed reactor

    No full text
    In the present study, particulate emissions from the co-combustion of forest biomass residues with sewage sludge in a pilot-scale bubbling fluidised bed combustor were characterised. The combustion flue gas was exhausted to the atmosphere after passing through a cyclone separator. Physical-chemical characteristics of the particles were studied: i) morphology and aerosol size, surface and volume distributions before the cyclone and ii) chemical composition (carbonates, water soluble-inorganic ions, organic and elemental carbon) before and after the cyclone. Chemical composition data were used to calculate aerosol density and refractive index. Aerosols showed a unimodal size distribution with a geometric mean diameter of 2.25 ± 0.02 μm and a geometric standard deviation of 1.27 ± 0.01. The surface and volume mean diameters were 2.64 ± 0.02 μm and 2.91 ± 0.05 μm, respectively. Water-soluble inorganic ions were predominant in the fine particle fraction (PM2.5). The filters were loaded of crystallised mineral particles. The analysis revealed a dominance of calcium carbonate/oxide and halide (NaCl or KCl), sulphate and aluminosilicate nanocrystals forming larger mixed aggregates.This work was supported by Portuguese Science Foundation (FCT) through the projects PTDC/AAC-AMB/098112/2008 Bias-to-soil — Biomass ashes: Characteristics in relation to its origin, treatment and application on soil and PTDC/AMB/65706/2006 (BIOEMI). The electron microscopy analyses were conducted at CNME-UCM through the AEROCLIMA project (Fundación Ramón Areces). Ana I. Calvo acknowledges the pos-doc grant SFRH/BPD/64810/2009 from the FCT. We would also like to thank Diana Patoilo (University of Aveiro, Portugal) for supporting the chromatographic analyses, and Véronique Pont (University of Toulouse, France) and Darrel Baumgardner (Droplet Measurement Technologies, Boulder) for their valuable comments.publishe

    Source apportionment of atmospheric aerosol in a marine dusty environment by ionic/composition mass balance (IMB)

    No full text
    PM10 aerosol was sampled in Santiago, the largest island of Cabo Verde, for 1 year, and analysed for elements, ions and carbonaceous material. Very high levels of dust were measured during the winter months, as a result of the direct transport of dust plumes from the African continent. Ionic and mass balances (IMBs) were applied to the analysed compounds, permitting the determination of six to seven different processes and source contributions to the aerosol loading: insoluble and soluble dust, sea salt, carbonaceous material and secondary inorganic compounds resulting from the reaction of acidic precursors with ammonia, sea salt and dust. The mass balance could be closed by the consideration and estimation of sorbed water that constituted 20&thinsp;%–30&thinsp;% of the aerosol mass. The balance methodology was compared with positive matrix factorisation (PMF), showing similar qualitative source composition. In quantitative terms, while for soil dust and secondary inorganic compound source classes, the results are similar, for other sources such as sea-salt spray there are significant differences in periods of dust episodes. The discrepancies between both approaches are interpreted based on calculated source profiles. The joint utilisation of the two methodologies, which are complementary, gives confidence in our capability for the correct source apportionment of aerosol particles.</p
    corecore