7 research outputs found
Correlations of antibody response phenotype to genotype revealed by molecular amplification fingerprinting
It has long been possible to measure the phenotype of antibody responses (antigen-specific titers) through conventional serological assays (e.g., ELISA). In contrast, the ability to measure the genotype of antibody responses has only recently become possible through the advent of high-throughput antibody repertoire sequencing (Ig-seq), which provides quantitative molecular information on clonal expansion, diversity and somatic hypermutation. However, Ig-seq is compromised by the presence of bias and errors introduced during library preparation and sequencing and thus prevent reliable immunological conclusions from being made. By using synthetic antibody spike-in genes, we determined that Ig-seq data overestimated antibody diversity measurements by up to 5000-fold and was less than 60% accurate in clonal frequency measurements.
Please click Additional Files below to see the full abstract
Phenotype-Independent Isolation of Interspecies Saccharomyces Hybrids by Dual-Dye Fluorescent Staining and Fluorescence-Activated Cell Sorting
Interspecies hybrids of Saccharomyces species are found in a variety of industrial environments and often outperform their parental strains in industrial fermentation processes. Interspecies hybridization is therefore increasingly considered as an approach for improvement and diversification of yeast strains for industrial application. However, current hybridization methods are limited by their reliance on pre-existing or introduced selectable phenotypes. This study presents a high-throughput phenotype-independent method for isolation of interspecies Saccharomyces hybrids based on dual dye-staining and subsequent mating of two strains, followed by enrichment of double-stained hybrid cells from a mating population by fluorescence-activated cell sorting (FACS). Pilot experiments on intra-species mating of heterothallic haploid S. cerevisiae strains showed that 80% of sorted double-stained cells were hybrids. The protocol was further optimized by mating an S. cerevisiae haploid with homothallic S. eubayanus spores with complementary selectable phenotypes. In crosses without selectable phenotype, using S. cerevisiae and S. eubayanus haploids derived from laboratory as well as industrial strains, 10 to 15% of double-stained cells isolated by FACS were hybrids. When applied to rare mating, sorting of double-stained cells consistently resulted in about 600-fold enrichment of hybrid cells. Mating of dual-stained cells and FACS-based selection allows efficient enrichment of interspecies Saccharomyces hybrids within a matter of days and without requiring selectable hybrid phenotypes, both for homothallic and heterothallic strains. This strategy should accelerate the isolation of laboratory-made hybrids, facilitate research into hybrid heterosis and offer new opportunities for non-GM industrial strain improvement and diversification
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology.ISSN:2375-254
In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation.
Saccharomyces eubayanus is the non-S. cerevisiae parent of the lager-brewing hybrid S. pastorianus. In contrast to most S. cerevisiae and Frohberg-type S. pastorianus strains, S. eubayanus cannot utilize the α-tri-glucoside maltotriose, a major carbohydrate in brewer's wort. In Saccharomyces yeasts, utilization of maltotriose is encoded by the subtelomeric MAL gene family, and requires transporters for maltotriose uptake. While S. eubayanus strain CBS 12357T harbors four SeMALT genes which enable uptake of the α-di-glucoside maltose, it lacks maltotriose transporter genes. In S. cerevisiae, sequence identity indicates that maltotriose and maltose transporters likely evolved from a shared ancestral gene. To study the evolvability of maltotriose utilization in S. eubayanus CBS 12357T, maltotriose-assimilating mutants obtained after UV mutagenesis were subjected to laboratory evolution in carbon-limited chemostat cultures on maltotriose-enriched wort. An evolved strain showed improved maltose and maltotriose fermentation in 7 L fermenter experiments on industrial wort. Whole-genome sequencing revealed a novel mosaic SeMALT413 gene, resulting from repeated gene introgressions by non-reciprocal translocation of at least three SeMALT genes. The predicted tertiary structure of SeMalT413 was comparable to the original SeMalT transporters, but overexpression of SeMALT413 sufficed to enable growth on maltotriose, indicating gene neofunctionalization had occurred. The mosaic structure of SeMALT413 resembles the structure of S. pastorianus maltotriose-transporter gene SpMTY1, which has high sequences identity to alternatingly S. cerevisiae MALx1, S. paradoxus MALx1 and S. eubayanus SeMALT3. Evolution of the maltotriose transporter landscape in hybrid S. pastorianus lager-brewing strains is therefore likely to have involved mechanisms similar to those observed in the present study
Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid.
While CRISPR-Cas9-mediated genome editing has transformed yeast research, current plasmids and cassettes for Cas9 and guide-RNA expression are species specific. CRISPR tools that function in multiple yeast species could contribute to the intensifying research on non-conventional yeasts. A plasmid carrying a pangenomic origin of replication and two constitutive expression cassettes for Cas9 and ribozyme-flanked gRNAs was constructed. Its functionality was tested by analyzing inactivation of the ADE2 gene in four yeast species. In two Kluyveromyces species, near-perfect targeting (≥96%) and homologous repair (HR) were observed in at least 24% of transformants. In two Ogataea species, Ade- mutants were not observed directly after transformation, but prolonged incubation of transformed cells resulted in targeting efficiencies of 9% to 63% mediated by non-homologous end joining (NHEJ). In an Ogataea parapolymorpha ku80 mutant, deletion of OpADE2 mediated by HR was achieved, albeit at low efficiencies (<1%). Furthermore the expression of a dual polycistronic gRNA array enabled simultaneous interruption of OpADE2 and OpYNR1 demonstrating flexibility of ribozyme-flanked gRNA design for multiplexing. While prevalence of NHEJ prevented HR-mediated editing in Ogataea, such targeted editing was possible in Kluyveromyces. This broad-host-range CRISPR/gRNA system may contribute to exploration of Cas9-mediated genome editing in other Saccharomycotina yeasts