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ABSTRACT

While CRISPR-Cas9-mediated genome editing has transformed yeast research, current plasmids and cassettes for Cas9 and
guide-RNA expression are species specific. CRISPR tools that function in multiple yeast species could contribute to the
intensifying research on non-conventional yeasts. A plasmid carrying a pangenomic origin of replication and two
constitutive expression cassettes for Cas9 and ribozyme-flanked gRNAs was constructed. Its functionality was tested by
analyzing inactivation of the ADE2 gene in four yeast species. In two Kluyveromyces species, near-perfect targeting (≥96%)
and homologous repair (HR) were observed in at least 24% of transformants. In two Ogataea species, Ade− mutants were not
observed directly after transformation, but prolonged incubation of transformed cells resulted in targeting efficiencies of 9%
to 63% mediated by non-homologous end joining (NHEJ). In an Ogataea parapolymorpha ku80 mutant, deletion of OpADE2
mediated by HR was achieved, albeit at low efficiencies (<1%). Furthermore the expression of a dual polycistronic gRNA
array enabled simultaneous interruption of OpADE2 and OpYNR1 demonstrating flexibility of ribozyme-flanked gRNA design
for multiplexing. While prevalence of NHEJ prevented HR-mediated editing in Ogataea, such targeted editing was possible in
Kluyveromyces. This broad-host-range CRISPR/gRNA system may contribute to exploration of Cas9-mediated genome editing
in other Saccharomycotina yeasts.

Keywords: CRISPR/Cas9; ribozymes; Kluyveromyces lactis; Kluyveromyces marxianus; Ogataea polymorpha; Hansenula polymorpha

INTRODUCTION

Design and construction of efficient yeast cell factories for
industrial production of fuels and a wide range of chemicals

is among the key developments in microbial biotechnology in
the last 20 years (Nielsen et al. 2013; Chen et al. 2015; Wang,
Huang and Nielsen 2017). Saccharomyces cerevisiae is currently
the most intensively used yeast species for production of low-
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molecular-weight products such as alcohols, organic acids and
isoprenoids (Mattanovich, Sauer and Gasser 2014). Its tolerance
to high sugar concentrations and low pH, its overall robustness,
its ability to grow anaerobically and especially its tractability to
genetic manipulation make S. cerevisiae a convenient chassis for
various biotechnological purposes (Kavscek et al. 2015; Li and
Borodina 2015). Furthermore, availability of high-quality
genome sequences and well-developed genetic tools (Salazar
et al. 2017; Stovicek, Holkenbrink and Borodina 2017) facilitate
tailoring of S. cerevisiae to specific industrial applications, either
by improving existing traits or by expressing heterologous
enzymes and pathways. However, its narrow temperature
spectrum, limited substrate range and strong tendency toward
alcoholic fermentation under aerobic conditions have stim-
ulated interest in studying non-Saccharomyces species, often
referred to as ‘non-conventional yeasts’, that exhibit attractive
features for further improving sustainability and economic
viability of biobased production (Johnson 2013).

Kluyveromyces lactis and K. marxianus are non-conventional
yeasts that are generally regarded as safe (GRAS), can uti-
lize lactose as a carbon source and have been applied for
bioethanol production from cheese whey, a by-product of the
dairy industry (Siso 1996). Kluyveromyces lactis has an excel-
lent capacity for protein secretion, which has been exploited
for production of several heterologous proteins (Spohner et al.
2016). Kluyveromyces marxianus can grow very fast at temper-
atures above 40◦C and has been used for the production of
bioethanol, biomass and flavor compounds (Morrissey et al.
2015). The thermotolerant and methylotrophic yeast Ogataea
polymorpha (syn. Hansenula polymorpha) is a major established
platform for heterologous protein expression thanks to the
availability of extremely strong yet tightly controlled promot-
ers (Gellissen 2000). In addition, this yeast has been engineered
for high-temperature ethanol fermentation from various car-
bon sources, including xylose (Kurylenko et al. 2014), and glyc-
erol, a by-product originating from biodiesel production (Kata
et al. 2016). Ogataea polymorpha shares many characteristics with
the closely related species O. parapolymorpha, which was taxo-
nomically separated from O. polymorpha in 2010, and now in-
cludes the popular former H. polymorpha DL-1 strain (Suh and
Zhou 2010).

The unique physiological characteristics of non-
conventional yeast species have the potential to reduce
production costs of processes that are currently performed
with S. cerevisiae. However, analogous to the situation in in-
dustrial S. cerevisiae strains, this will require extensive genetic
engineering. While obtaining the necessary genome-sequence
information is relatively straightforward due to fast develop-
ments in whole-genome sequencing (Goodwin, McPherson and
McCombie 2016), genetic modification by classical methods is
still challenging mostly due to the predominant DNA-repair
mechanisms of many non-conventional yeasts (Nonklang et al.
2008; Abdel-Banat et al. 2010). Unlike S. cerevisiae, these yeasts
typically have a very active non-homologous end joining (NHEJ)
DNA repair mechanism and use homologous recombination
(HR) to a much lesser extent, which makes precise genome
editing inefficient as provided linear repair DNA fragments
are not efficiently integrated at the targeted genomic locus
(Klinner and Schäfer 2004). Introduction of a double-strand
break (DSB) in the targeted DNA locus can strongly facilitate
genetic engineering, either by introduction of mutations at
the cut site or by stimulating the occurrence of HR-mediated
DNA repair with co-transformed repair fragments (Jasin and
Rothstein 2013; Kuijpers et al. 2013b).

Over the past five years, the CRISPR-Cas9 system has
emerged as a powerful and versatile tool to engineer the
genomes of a wide range of organisms (Hsu, Lander and Zhang
2014). In this system, the endonuclease CRISPR associated pro-
tein 9 (Cas9) binds a guide RNA molecule (gRNA) that targets a
sequence-specific site in the genome (Jinek et al. 2012). The Cas9-
gRNA complex then induces a DSB that is lethal unless repaired.
Repair of DSBs typically occurs through NHEJ or HR, depend-
ing on the presence of a repair DNA fragment and the predomi-
nant DSB repair mechanism of the host cell (Shrivastav, De Haro
and Nickoloff 2008). CRISPR-Cas9’s ability to induce mutations
in the target sequence has been widely exploited in the devel-
opment of genetic tools for various non-conventional yeasts in-
cluding K. lactis (Horwitz et al. 2015), K. marxianus (Löbs et al. 2017;
Nambu-Nishida et al. 2017),O. polymorpha (Numamoto, Maekawa
and Kaneko 2017), Pichia pastoris (Weninger et al. 2016), Scheffer-
somyces stipitis (Cao et al. 2017) and Yarrowia lipolytica (Gao et al.
2016, Schwartz et al. 2016). However, the plasmid and Cas9/gRNA
expression systems available today have generally only been de-
signed for and tested in a single yeast species, thus limiting the
potential of each system to work on different yeasts with novel
characteristics.

In this study, we developed a novel wide-host-range
CRISPR/Cas9 system for use across several yeast species,
based on plasmid-borne expression of Cas9 and a ribozyme-
flanked gRNA that was recently developed for S. pasto-
rianus, a Saccharomyces hybrid highly resilient to genetic
modification (Gorter de Vries et al. 2017). The system was suc-
cessfully tested in K. marxianus, K. lactis, O. polymorpha and O.
parapolymorpha. The results highlight the potential of cross-
species CRISPR-Cas9 tools for genome engineering in yeasts.

MATERIALS AND METHODS

Strains and growth conditions

The K. lactis, K. marxianus, O. polymorpha and O. parapolymorpha
strains used in this study are listed in Table 1. For cultivation
under non-selective conditions, strains were grown in 500 mL
shake flasks containing 100 mL YPD medium (10 g L−1 Bacto
yeast extract, 20 g L−1 Bacto peptone, 20 g L−1 glucose, deminer-
alized water), placed in a rotary shaker set to 30◦C and 200 rpm.
For antibiotic selection, media for cultivation of Kluyveromyces
and Ogataea species were supplemented with 200 and 300 μg
mL−1 hygromycin B, respectively. Prolonged liquid incubation
for generation of gene disruptions in Ogataea species was car-
ried out under selective conditions in 50 mL vented tubes (Cell-
star CELLreactor, Greiner Bio-One, Kremsmünster, Austria), con-
taining 25 mL YPD medium and incubated as described above.
Solid medium was prepared by addition of 2% (w/v) agar. To
verify the disruption of nitrate reductase gene YNR1, O. para-
polymorpha was grown on synthetic medium (SM) which con-
tained 20 g L−1 glucose, 3 g L−1 KH2PO4, 0.5 g L−1 MgSO4, 7 H2O,
5 g L−1 (NH4)2SO4, 1 mL L−1 of a trace element solution and of a
vitamin solution as previously described in Verduyn et al. (1992)
and on syntheticmediumwith nitrate (SMN) inwhich (NH4)2SO4

was substituted with 5 g L−1 K2SO4 and 4.3 g L−1 NaNO3. For
multiplexed targeting of ADE2 and YNR1 in O. parapolymorpha,
SM and SMN media were supplemented with 15 mg L–1 ade-
nine to allow for growth of Ade− mutants. Frozen stock cultures
were prepared from exponentially growing shake-flask cultures
by addition of 30% (v/v) glycerol, and aseptically stored in 1 mL
aliquots at –80◦C.
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Table 1. Kluyveromyces and Ogataea strains used in this study.

Species Strain Genotype Origin

Kluyveromyces lactis CBS 2359 Wild type CBS-KNAWA, van der Walt (1971)
IMK829 �ade2 This study

Kluyveromyces marxianus CBS 5795 Wild type CBS-KNAWA, van der Walt (1971)
NBRC 1777 Wild type NBRCB

IMK830 �ade2 This study
CBS 397 Wild type CBS-KNAWA, van der Walt (1971)

Ogataea polymorpha (syn. Hansenula polymorpha) CBS 4732 Wild type CBS-KNAWA, Yamada et al. (1994)
Ogataea parapolymorpha (syn. Hansenula polymorpha) CBS 11895 (DL-1, ATCC

26012)
Wild type CBS-KNAWA, Suh and Zhou (2010)

IMD001 ku80A340AA This study
IMK828 ku80A340AA �ade2 This study
IMD034 ade2C120CA ynr1G397GT This study

CBS 2359, CBS 5795, CBS 397, CBS 4732 and CBS 11895 were obtained from the CBS-KNAW fungal collection (A Westerdijk Fungal Biodiversity Institute, Utrecht, The
Netherlands). NBRC 1777 was obtained from the NBRC culture collection (B National Institute of Technology and Evaluation, Tokyo, Japan).

Table 2. Plasmids used in this study.

Name (Addgene Plasmid #) Relevant characteristics Origin

pYTK079 Template for hph (HygR) open reading frame Lee et al. (2015)
pUD423 Template for AaTEF1p-Spcas9D147Y P411T-ScPHO5t cassette Gorter de Vries et al. (2017)
pUD527 ori kanR SHRA AgTEF1p-amdS-AgTEF1t SHRB GeneArt
pUD530 ori kanR panARS(OPT) GeneArt
pUD531 ori kanR SHRC ScTDH3p-BsaI BsaI-ScCYC1t SHRI GeneArt
pUD532 ori kanR SHRI ori bla SHRA GeneArt
pUD540 ori ampR BsaIHH-gRNAOpADE2-HDVBsaI GeneArt
pUD555 ori ampR BsaIHH-gRNAKlADE2-HDVBsaI GeneArt
pUD602 ori ampR BsaIHH-gRNAOpKU80-HDVBsaI GeneArt
pUD750 ori ampR BsaIHH-gRNAOpADE2-HDV-HH-gRNAOpYNR1-HDVBsaI This study
pUDP002 (plasmid #103872) ori ampR panARS(OPT) AgTEF1p-hph-AgTEF1t ScTDH3pBsaI BsaIScCYC1t

AaTEF1p-Spcas9D147Y P411T-ScPHO5t
This study

pUDP013 (plasmid #103873) ori ampR panARS(OPT) AgTEF1p-hph-AgTEF1t ScTDH3p-HH-gRNAOpADE2-HDV-
ScCYC1t AaTEF1p-Spcas9D147Y P411T-ScPHO5t

This study

pUDP025 (plasmid #103874) ori ampR panARS(OPT) AgTEF1p-hph-AgTEF1t ScTDH3p-HH-gRNAKlADE2-HDV-
ScCYC1t AaTEF1p-Spcas9D147Y P411T-ScPHO5t

This study

pUDP046 (plasmid #107062) ori ampR panARS(OPT) AgTEF1p-hph-AgTEF1t ScTDH3p-HH-gRNAOpKU80-HDV-
ScCYC1t AaTEF1p-Spcas9D147Y P411T-ScPHO5t

This study

pUDP082 (plasmid #103875) ori ampR panARS(OPT) AgTEF1p-hph-AgTEF1t ScTDH3p-HH-gRNAKmADE2-HDV-
ScCYC1t AaTEF1p-Spcas9D147Y P411T-ScPHO5t

This study

pUDP123 (plasmid # 107269) ori ampR panARS(OPT) AgTEF1p-hph-AgTEF1t
ScTDH3p-HH-gRNAOpADE2-HDV-HH-gRNAOpYNR1-HDV-ScCYC1t
AaTEF1p-Spcas9D147Y P411T-ScPHO5t

This study

Restriction enzyme sites are indicated in superscript and gRNA target sequences are indicated in subscript. SHRs represent specify synthetic homologous recom-
bination sequences used for plasmid assembly. Aa: Arxula adeninivorans; Sp: Streptococcus pyogenes; Ag: Ashbya gossypii; Sc: Saccharomyces cerevisiae; Op: Ogataea
(para)polymorpha; Kl: Kluyveromyces lactis; Km: Kluyveromyces marxianus; HH: hammerhead ribozyme; HDV: hepatitis delta virus ribozyme. pUDP013 (gRNAOpADE2) targets

ADE2 in both O. polymorpha and O. parapolymorpha. The addgene plasmid code (when relevant) is indicated next to the plasmid name between brackets.

Construction of plasmids and repair DNA fragments

All plasmids used in this study are described in Table 2. The
DNA parts harbored by plasmids pUD527, pUD530, pUD531,
pUD532 pUD540, pUD555, pUD602 and pUD750were de novo syn-
thesized by GeneArt (Thermo Fisher Scientific, Waltham, MA,
USA).

For the construction of pUDP002, an intermediate plasmid
containing the Klebsiella pneumoniae hph (HygR) open reading
frame (ORF), expressed from the TEF1 promoter and termina-
tor from the yeast Ashbya gossypii (Eremothecium gossypii), was
constructed by ‘Gibson’ assembly (Gibson et al. 2009) from plas-
mids pYTK079 (Lee et al. 2015) and pUD527: the hph ORF was

amplified from pYTK079 using primers 9837 and 9838, and in-
serted into a plasmid backbone which was generated by PCR
amplification of pUD527 using primers 9839 and 9840. Plasmid
pUDP002 was constructed by Gibson assembly from five over-
lapping fragments, using synthetic homologous recombination
sequences (Kuijpers et al. 2013a): (i) theAgTEF1p-hph-AgTEF1t hy-
gromycin resistance cassette was amplified from the intermedi-
ate plasmid using primers 9841 and 9842 and sequence-verified
before further use; (ii) the AaTEF1p-cas9D147Y P411T-ScPHO5t ex-
pression cassette (Bao et al. 2015; Gorter de Vries et al. 2017)
was obtained by amplification of pUD423 using primers 3841 and
9393; (iii) the pangenomic yeast replication origin panARS(OPT)
(Liachko and Dunham 2014) was amplified from pUD530 using
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Table 3. gRNA target sequences used in this study.

Locus Target sequence (5′-3′) Position in ORF (bp) AT score RNA score

KlADE2 TTTCAATACCTCAAGTGCTTCGG 508/1710 0.65 0.70
KmADE2 GCCCATTTTTCTGCGTATAGCGG 537/1710 0.55 0.70
OpADE2∗ CTGGAATTGATCTGCTTGGCCGG 120/1704 0.50 0.35
OpKU80 CATCGTTCTGCAGAAGATCATGG 340/2076 0.55 0.55
OpYNR1 AGCACAGACCATAGTAACTGGGG 397/2580 0.55 0.55

Target sequences are shown including PAM sequence (underlined). The gRNA for OpADE2 targets the respective genes at the same position in both O. polymorpha and O.

parapolymorpha. Position in ORF indicates the base pair after which the Cas9-mediated DSB is expected, out of the total length of the ORF. AT score indicates AT content

of the 20-bp target sequence. RNA score indicates the fraction of unpaired nucleotides of the 20-bp target sequence, predicted with the complete gRNA sequence using
minimum free energy prediction by RNAfold (Lorenz et al. 2011).
∗The same sequence was used for single (pUDP013) and for double (pUDP123) editing.

primers 9663 and 3856; (iv) the empty ScTDH3p-ScCYC1t gRNA
expression cassette was obtained by digestion of pUD531 with
SmaI; (v) the Escherichia coli pBR322 origin and bla gene for ampi-
cillin selection were obtained by digestion of pUD532 with SmaI.
The five fragments were gel-purified and 0.1 pmol of each frag-
ment was assembled in a Gibson assembly reaction. An E. coli
clone containing the correctly assembled plasmid (verified by di-
gestion with PdmI) was stocked and pUDP002 (Addgene Plasmid
#103872) was used as gRNA entry plasmid for subsequent plas-
mid construction.

The gRNA expression plasmids pUDP013 (plasmid #103873),
pUDP025 (plasmid #103874), pUDP046 (plasmid #107062) and
pUDP123 (plasmid #107269) were assembled in a one-pot
‘Golden Gate’ assembly (Engler, Kandzia and Marillonnet 2008)
by BsaI digestion of pUDP002 and a synthesized donor plas-
mid containing the respective gRNA sequences flanked by ri-
bozymes and BsaI restriction sites. pUDP013, pUDP025, pUDP046
and pUDP123 were constructed using pUD540, pUD555, pUD602
and pUD750, respectively. The Golden Gate assemblies were
carried out in a final volume of 20 μL, using T4 DNA lig-
ase buffer (Thermo Fisher Scientific), 10 U BsaI (New Eng-
land Biolabs), 1 U T4 DNA ligase (Thermo Fisher Scientific)
and 10 ng of both pUDP002 and the respective donor plasmid.
For the construction of pUDP082 (plasmid #103875), the par-
tially overlapping primers Km-ade2-F and Km-ade2-R were an-
nealed, extended and amplified by PCR to yield a 233-bp double-
stranded DNA fragment containing the KmADE2 gRNA target
sequence flanked by ribozymes and BsaI sites, which was in-
tegrated into pUDP002 by Golden Gate assembly as described
above. All constructed gRNA-harboring plasmids were verified
by digestion with PdmI. Plasmids pUDP002, pUDP013, pUDP025,
pUDP046, pUDP082 and pUDP123 were deposited at Addgene
(https://www.addgene.org/).

The ADE2 repair DNA fragments of K. lactis (962 bp), K marxi-
anus (959 bp), O. polymorpha (960 bp) and O. parapolymorpha (960
bp) were constructed from strains CBS 2359, CBS 5795, CBS 4732
and CBS 11895, respectively, using primer sets 10723 & 10724 and
10725 & 10726 (K. lactis), 10727 & 10728 and 10729 & 10730 (K.
marxianus), 10346 & 10347 and 10348 & 10349 (O. polymorpha) and
10354 & 10355 and 10356 & 10357 (O. parapolymorpha) to amplify
the homology regions flanking ADE2. Both regions were then
joined by overlap extension PCRusing primer sets 10723& 10726,
10727 & 10730, 10346 & 10349 and 10354 & 10357 in the case of K.
lactis, K. marxianus, O. polymorpha and O. parapolymorpha, respec-
tively. In all cases, the final repair fragment was gel-purified and
further amplified to obtain quantities required for transforma-
tion, using primer sets 10723 & 10726, 10727 & 10730, 10346 &
10349, and 10354 & 10357 for K. lactis, K. marxianus, O. polymor-

pha and O. parapolymorpha, respectively. The primers pairs were
designed to amplify the 480 bp (±1 or 2 bp in some cases) up-
stream the ATG or the 480-bp terminator region downstream the
stop codon of the interrupted/deleted ORF.

Design of gRNA target sequences and BsaI-flanked
entry constructs

All 20-bp Cas9 gRNA target sequences used in this study are
described in Table 3. Approximately 10 candidate target se-
quences were chosen from the first third of each targeted ORF,
based on the presence of an NGG protospacer adjacent mo-
tif (PAM) site. Any target sequence with off-targets (defined
as a sequence with NGG or NAG PAM and more than 15 nu-
cleotides identical to the candidate sequence) was excluded,
based on a blastn homology search against the respective yeast
genome (https://blast.ncbi.nlm.nih.gov). The remaining target
sequences were ranked based on AT content (‘AT score’; 0 be-
ing the lowest and 1 being the highest possible AT content)
and secondary structure as predicted with the complete gRNA
sequence, using minimum free energy prediction by RNAfold
(Lorenz et al. 2011) (‘RNA score’; 0 being the lowest and 1 be-
ing the highest possible number of unpaired target sequence
nucleotides). Finally, the target sequences with the highest cu-
mulative AT and RNA score that did not exceed an AT score of
0.8 were chosen for use in this study.

To integrate ribozyme-flanked gRNAs into pUDP002, the
synthetic 233-bp dsDNA gRNA entry constructs were flanked
by inward-facing BsaI sites generating sticky ends (underlined)
‘GGTCTCGCAAA’ and ‘ACAGCGAGACC’ at their 5′ and 3′ ends,
respectively, compatible with BsaI-digested pUDP002. The
sequence between the BsaI sites consisted of (i) the hammer-
head ribozyme with the first six nucleotides being the reverse
complement (c) of the first six nucleotides of the gRNA spacer
‘cN6

cN5
cN4

cN3
cN2

cN1CUGAUGAGUCCGUGAGGACGAAACGAGUA
AGCUCGUC’, (ii) followed by the 20-nucleotide gRNA
spacer, followed by the structural gRNA ‘GUUUUAGAGCUA-
GAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU-
GAAAAAGUGGCACCGAGUCGGUGCUUUU’, (iii) followed by the
hepatitis delta virus ribozyme ‘GGCCGGCAUGGUCCCAGCC
UCCUCGCUGGCGCCGGCUGGGCAACAUGCUUCGGCAUGGCGA
AUGGGAC’ (Gao and Zhao 2014; Gorter de Vries et al. 2017).
For multiplexed targeting of O. parapolymorpha ADE2 and YNR1
using a single expression cassette, two ribozyme-flanked
gRNAs were connected in a tandem array using 20-bp linker
‘GTGTAATGTCCAGAGTTGTG’, and otherwise constructed as
described previously (Gorter de Vries et al. 2017).
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Strain construction

Yeast transformations
Kluyveromyces lactis and K. marxianus were transformed using
the LiAc/single-strand carrier DNA/polyethylene glycol method
(Gietz and Schiestl 2007). Overnight pre-cultures in YPDmedium
were used to inoculate a shake flask containing YPD medium to
an initial OD660nm of 0.5. Cultures were then incubated at 30 ◦C
until an OD660nm of 2.0 was reached, harvested and transformed
with 200 ng of plasmid DNA and 300 or 1000 ng of repair DNA
fragment in the case of K. lactis or K. marxianus, respectively. Af-
ter heat shock, cells were recovered in 1 mL YPDmedium for 3 h
and plated on selective YPD medium. Plates were typically kept
for 5 days at 30◦C and then incubated at 4◦C for 2 h before as-
sessing the percentage of red Ade− colonies. Ogataea polymorpha
andO. parapolymorphawere transformed using the procedure for
preparation of competent cells and electroporation described by
Saraya et al. (2014), withmodifications. All steps were performed
at 30◦C, OD660nm of all cultures harvested for transformationwas
normalized to OD660nm 1.2 by dilution with sterile demineral-
ized water, all centrifugation steps were carried out for 3 min
at 3000 g, the DTT incubation step was done for 20 min, and
the washing step with STM buffer was performed twice with 50
mL. Electroporation was carried out with 40 μL of a freshly pre-
pared competent cell suspension in 2mmgap cuvettes (Bio-Rad,
Hercules, CA, USA), using 200 ng of plasmid DNA and 1 μg of re-
pair fragment. A Micropulser Electroporator (Bio-Rad) set to the
‘Sc2’ preset (1.5 kV) was used for pulse delivery. After electro-
poration, cells were recovered in 1 mL YPD medium for 1 h at
30◦C before plating onto selective YPD medium. For the direct
inoculation of prolonged liquid incubation cultures, 100 μL of re-
covered cell suspension was used as inoculum. Selection plates
were typically kept for 4 days at 30◦C and then incubated at 4◦C
for a minimum of 24 h before assessing the percentage of red
Ade− colonies.

Molecular diagnosis of yeast mutants
For molecular analysis of K. lactis and K. marxianus mutants,
colonies were grown overnight in YPD medium. Genomic DNA
was extracted using the method described by Singh and Weil
(2002), and used as template for PCR reactions targeting the
ADE2 locus. Primer sets 10909 & 10910, and 10911 & 10912
were used for K. lactis and K. marxianus, respectively. For Sanger
sequencing of putative NHEJ-corrected mutants, PCR products
were purified and then sequenced using primers 10737 and Se-
qADE2 for K. lactis and K. marxianus, respectively. For O. poly-
morpha and O. parapolymorpha, genomic DNA was directly iso-
lated from colonies, using the LiAc-sodium dodecyl sulfate
method (Looke, Kristjuhan and Kristjuhan 2011). Primer sets
10380 & 10381, and 10915 & 10916 were used to check for deleted
ADE2 loci in O. polymorpha and O. parapolymorpha, respectively,
while sequencing of NHEJ-corrected mutants was done using
primer sets 10378 & 10379, and 10386 & 10387, respectively.
The deleted ADE2 locus in strain IMK828 was amplified and
Sanger-sequenced using primers 10915 and 10916. Additionally
for O. parapolymorpha primer pair 12257 & 12266 (Table 4) was
used to amplify OpYNR1 to verify editing of this locus by Sanger
sequencing.

Construction of IMK829, IMK830, IMD001, IMK828 and IMD034
To construct IMK829 (K. lactis �ade2), strain CBS 2359 was co-
transformed with 200 ng of pUDP025 (harboring gRNAKlADE2) and
300 ng of a 962-bp repair DNA fragment as described above. The
resulting transformants were analyzed by diagnostic PCR using

primers 10909 and 10910, and amutant exhibiting a PCR product
compatible with deletion of the ADE2 ORF was isolated and re-
named IMK829. To construct IMK830 (K. marxianus �ade2), strain
NBRC 1777 was co-transformed with 200 ng of pUDP082 (har-
boring gRNAKmADE2) and 1 μg of a 959-bp repair DNA fragment
as described above. The resulting transformants were analyzed
by diagnostic PCR using primers 10911 and 10912, and a mu-
tant exhibiting a PCR product compatible with deletion of the
ADE2 ORF was isolated and renamed IMK830. For the construc-
tion of IMD001 (O. parapolymorpha ku80A340AA), the O. parapoly-
morpha KU80 ORF (accession XM 014078010.1) was identified by
a tblastn homology search (https://blast.ncbi.nlm.nih.gov) using
the S. cerevisiae YKU80 protein sequence and O. parapolymorpha
CBS 11895 (DL-1) RefSeq assembly (accession GCF 000187245.1)
(Ravin et al. 2013). Strain CBS 11895 was transformed with
200ng of pUDP046 (harboring gRNAOpKU80), and a single trans-
formant was picked and used to inoculate a prolonged liq-
uid incubation culture as described above. After 96 h, cells
were plated on selective YPD medium, genomic DNA was
isolated from randomly picked colonies, and the KU80 locus
was amplified and Sanger-sequenced using primers 10751 and
10752. Amutant containing a single adenine nucleotide inserted
between position 340 and 341 of the KU80 ORF was restreaked
three times subsequently on non-selective YPD medium to re-
move pUDP046, and renamed IMD001. To construct IMK828
(O. parapolymorpha ku80A340AA �ade2), strain IMD001 was co-
transformed with 200 ng of pUDP013 (harboring gRNAOpADE2)
and 1 μg of a 960-bp repair DNA fragment as described above.
After recovery, 100 μL of transformation cell suspension was
directly used for inoculation of a prolonged liquid incubation
culture. After 48 h, cells were plated on selective medium and
the resulting colonies inspected for occurrence of the red Ade−

phenotype. A mutant which exhibited a PCR product com-
patible with deletion of the ADE2 ORF when analyzed by di-
agnostic PCR using primers 10915 and 10916 was restreaked
thrice subsequently on non-selective YPD medium to remove
pUDP013, and renamed IMK828. For the construction of IMD034
(O. parapolymorpha ade2C120CA ynr1G397GT), the O. parapolymorpha
HPODL 02384/YNR1 ORF (accession XM 014082012.1) was identi-
fied in O. parapolymorpha CBS 11895 (DL-1) RefSeq assembly (ac-
cession GCF 000187245.1) as previously described for OpKU80.
Strain CBS 11895 was transformed with 200 ng of pUDP123 (har-
boring dual gRNAOpADE2-OpYNR1), and a single transformant was
picked and used to inoculate a prolonged liquid incubation cul-
ture as described above. After 96 h, cells were plated on selec-
tive YPD medium. A set of 94 Ade− mutants were picked and
grown overnight on non-selective YPD and then replica plated
on SM and SMN media. A set of five transformants exhibiting
both Ade− (red colonies) and Nit− (absence of growth on nitrate)
phenotypes were randomly picked, genomic DNA was isolated
and the OpADE2 and OpYNR1 loci were amplified and Sanger-
sequenced using primer pairs 10386 & 10387 and 12257 & 12266
respectively. One sequence-confirmed double interruption mu-
tant was restreaked three times subsequently on non-selective
YPD medium to remove pUDP123, and renamed IMD034 (Ta-
ble 1).

Molecular biology techniques

PCR amplification with Phusion High Fidelity Polymerase
(Thermo Fisher Scientific) was performed according to the man-
ufacturer’s instructions using PAGE-purified oligonucleotide
primers (Sigma-Aldrich, St. Louis, MO, USA). Diagnostic PCR was
done using DreamTaq polymerase (Thermo Fisher Scientific)
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Table 4. Primers used in this study.

Name Sequence (5′ - 3′) Purpose

3841 CACCTTTCGAGAGGACGATG Construction of pUDP002
3856 CTAGCGTGTCCTCGCATAGTTC Construction of pUDP002
9393 TGCCGAACTTTCCCTGTATGAAGCGATCTGACCAATCCTTTGCC

GTAGTTTCAACGTATGTTTTCATTTTTGCGATGCCAG
Construction of pUDP002

9663 CATACGTTGAAACTACGGCAAAGGATTGGTCAGATCGCTTCAT
ACAGGGAAAGTTCGGCATCAACATCTTTGGATAATATCAGAATGAG

Construction of pUDP002

9837 ATACAGTTCTCACATCACATCCGAACATAAACAAGGATCCATG
GGTAAAAAGCCTGAACTC

Construction of pUDP002

9838 ACAAGTTCTTGAAAACAAGAATCTTTTTATTGTCCTCGAG
TTATTCCTTTGCCCTCGGAC

Construction of pUDP002

9839 CTCGAGGACAATAAAAAGATTCTTG Construction of pUDP002
9840 GGATCCTTGTTTATGTTCGGATG Construction of pUDP002
9841 ACTATATGTGAAGGCATGGC Construction of pUDP002
9842 GTTGAACATTCTTAGGCTGG Construction of pUDP002
Km-ade2-F GGTCTCGCAAAGTCAAGCTGATGAGTCCGTGAGGACGAAACG

AGTAAGCTCGTCGCCCATTTTTCTGCGTATAGGTTTT
AGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC
GTTATCAACTTGAAAAAGTGGCACC

Construction of pUDP082

Km-ade2-R GGTCTCGCTGTGTCCCATTCGCCATGCCGAAGCATGTTGCCC
AGCCGGCGCCAGCGAGGAGGCTGGGACCATGCCGGCCA
AAAGCACCGACTCGGTGCCACTTTTTCAA
GTTGATAACGGACTAGCCTTATTTTAACTTGC

Construction of pUDP082

10723 GTAGTACCGACCTTATCCGTG Construction of K. lactis ADE2 repair fragment
10724 GTTGTCTTAGTGAAGAAGGTGAAC Construction of K. lactis ADE2 repair fragment
10725 TATATAATAACATCACGTTCACCTTCTTCACTAAGACAACAGCTGC

CAAATTAGAAACTATCG
Construction of K. lactis ADE2 repair fragment

10726 TGTGCGTTGATATATGCCAAC Construction of K. lactis ADE2 repair fragment
10727 ATCATAGACAGTCAGTTAGTTCCC Construction of K. marxianus ADE2 repair fragment
10728 TTCTTTGGTCCATGATTAACAAGG Construction of K. marxianus ADE2 repair fragment
10729 ACTACAACAATATAAACCTTGTTAATCATGGACCAAAGAAGTATTC

AACTACCTCCAACAAGAAG
Construction of K. marxianus ADE2 repair fragment

10730 CAAATTTATGAAGTTTGTGCCATTTG Construction of K. marxianus ADE2 repair fragment
10346 TGTGCACTCAATTGCAACC Construction of O. polymorpha ADE2 repair fragment
10347 TTCCAACGACCTTTGAGTCC Construction of O. polymorpha ADE2 repair fragment
10348 TAATTTAATTTAATTTACATGGACTCAAAGGTCGTTGGAAGTTGGC

TATGAGGAATACCTTAAC
Construction of O. polymorpha ADE2 repair fragment

10349 GGGACGTTTACTGGACGG Construction of O. polymorpha ADE2 repair fragment
10354 CCTGATGTGCACTCAATTGC Construction of O. parapolymorpha ADE2 repair fragment
10355 CAACGACCTTCGAGTCCATC Construction of O. parapolymorpha ADE2 repair fragment
10356 TATTAATTTAATTTAATTTAGATGGACTCGAAGGTCGTTGCTCTG

TTGGCTATGAAGAATACC
Construction of O. parapolymorpha ADE2 repair fragment

10357 GTTTATTGGATGGCAATCTCG Construction of O. parapolymorpha ADE2 repair fragment
10737 AATTGCATCTCTTTGTGATGTC Sanger sequencing of K. lactis ADE2 disruptions
SeqADE2 CTGCAACTGCTTGTTCAGCC Sanger sequencing of K. marxianus ADE2 disruptions
10378 CCAATTACAAGTACTACTTCGAG Sanger sequencing of O. polymorpha ADE2 disruptions fw
10379 CTAGCTCCTTGGTGAAAGG Sanger sequencing of O. polymorpha ADE2 disruptions rv
10386 ACAAGTACTACTTCGAGGAC Sanger sequencing of O. parapolymorpha ADE2 disruptions fw
10387 CTAGCTCCTTGGTAAAGGG Sanger sequencing of O. parapolymorpha ADE2 disruptions rv
10751 GGACGCCTGCTTAGACTTG Sanger sequencing of O. parapolymorpha KU80 disruptions fw
10752 AGCACGGTATATTCGCACAG Sanger sequencing of O. parapolymorpha KU80 disruptions rv
12257 CACCATGGTCGGAAGAACC Sanger sequencing of O. parapolymorpha YNR1 disruptions fw
12266 ATGTAATTCCTCACGAACTTTGG Sanger sequencing of O. parapolymorpha YNR1 disruptions rv
10909 TCTTCGTCGCCATTTATTGTTGAG Diagnosis of K. lactis ADE2 deletions fw
10910 CTATTGCGGTTCGCTCTTCC Diagnosis of K. lactis ADE2 deletions rv
10911 ATTCGCCGAATCTGACGTG Diagnosis of K. marxianus ADE2 deletions fw
10912 TGGTGTGCAGACGGATAAAC Diagnosis of K. marxianus ADE2 deletions rv
10380 AGGTGCTCAAACACAAAGAG Diagnosis of O. polymorpha ADE2 deletions fw
10381 TCGTATCTCGTAAGTTGATTTAGG Diagnosis of O. polymorpha ADE2 deletions rv
10915 CCGTCTGAACGGAATGATGTC Diagnosis and Sanger sequencing of O. parapolymorpha ADE2

deletions fw
10916 CCCTCAACTGCAGACACATAG Diagnosis and Sanger sequencing of O. parapolymorpha ADE2

deletions rv
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Figure 1. Components of the pUDP genome editing system. (A) Map of pUDP002 (Addgene plasmid #103872), a wide-host-range gRNA entry plasmid. pUDP002 is
composed of a hph (HygR) selection marker cassette under control of the TEF1 promoter from Ashbya gossypii conferring hygromycin resistance, Spcas9D147Y P411T under
control of the TEF1 promoter from Arxula adeninivorans, the pangenomic yeast replication origin panARS(OPT), a BsaI cloning site for entry of gRNA constructs, and
a pBR322-derived E. coli origin and bla gene for ampicillin selection. A, B, F, C and I indicate 60 bp synthetic homologous recombination sequences used for ‘Gibson’

assembly of the plasmid. (B) Representation of the ribozyme-flanked gRNA expression cassette design. Guide RNAs (represented by gRNAADE2) were flanked on their
5′ by a hammerhead ribozyme (HH represented in orange) and on their 3′ by a hepatitis delta virus ribozyme (HDV represented in bronze). When integrated into
pUDP002, this construct is under control of the RNA polymerase II promoter TDH3 and the CYC1 terminator from S. cerevisiae. Upon ribozyme self-cleavage, a mature

gRNA comprised of the guiding protospacer (in blue) and the structural gRNA fragment (in green) is released.

and desalted primers (Sigma-Aldrich). All primer sequences are
shown in Table 4. DNA fragments obtained by PCR were sepa-
rated by gel electrophoresis. Gel purification was carried out us-
ing the Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine,
CA, USA). PCR purificationwas performed using either the GenE-
lute PCR Clean-Up Kit (Sigma-Aldrich) or GeneJET PCR purifica-
tion kit (Thermo Fisher Scientific). Gibson assembly was done
using the NEBuilder HiFi DNA Assembly Master Mix (New Eng-
land Biolabs, Ipswich, MA, USA) according to themanufacturer’s
recommendations. Restriction digest with PdmI and SmaI was
performed using FastDigest enzymes (Thermo Fisher Scien-
tific), according to the manufacturer’s instructions. Escherichia
coli strain XL1-blue was used for plasmid transformation, am-
plification and storage. Plasmids were isolated from E. coli with
the GenElute Plasmid Miniprep Kit (Sigma-Aldrich).

Whole-genome sequencing of O. parapolymorpha
IMD001

Genomic DNA of O. parapolymorpha IMD001 was isolated with
the QIAGEN Genomic-tip 100/G kit (Qiagen, Hilden, Germany)
from a stationary-phase overnight shake-flask culture grown
on YPD medium, according to the manufacturer’s instructions.
Genomic DNA was quantified using a Qubit R© 2.0 Fluorometer
(Thermo Fisher Scientific). Tenmicrograms of genomic DNAwas
sequenced by Novogene Bioinformatics Technology (Yuen Long,
Hong Kong, China) on a HiSeq 2500 (Illumina, San Diego, CA,
USA) with 150-bp paired-end reads using TruSeq PCR-free li-
brary preparation (Illumina). In order to verify complete absence
of plasmid pUDP046, sequencing reads were mapped to the se-
quence of pUDP046 and to the genome of O. parapolymorpha CBS
11895 (accession GCF 000187245.1) (Ravin et al. 2013) using the
Burrows–Wheeler Alignment tool and further processed using
SAMtools (Li et al. 2009; Li and Durbin 2010). The absence of se-
quences from pUDP046 was confirmed by visualizing the gen-
erated .bam files in the Integrative Genomics Viewer software
(Robinson et al. 2011). Sequencing data are available at NCBI
(https://www.ncbi.nlm.nih.gov/) under BioProject PRJNA413643.

RESULTS

pUDP: a plasmid-based wide-host-range yeast
CRISPR/Cas9 system

The pUDP system was designed to enable Cas9-mediated
genome editing in different yeast species by simple transfor-
mation with a single plasmid. To this end, DNA parts encod-
ing the plasmid origin of replication, cas9 expression cassette,
selection marker and gRNA expression cassette were chosen
to function in a wide range of yeast species (Fig. 1). To ensure
replication of pUDP plasmids, the pangenomic yeast origin of
replication panARS(OPT) was used. This origin of replication,
which was inspired by a K. lactis chromosomal ARS, has been
shown to function in at least 10 different species of ascomyce-
tous yeasts, including the species used in this study (Liachko
andDunham2014). The cas9D147Y P411T nuclease variant (Bao et al.
2015) was expressed under control of the TEF1 promoter from
Arxula adeninivorans (Blastobotrys adeninivorans), which enabled
strong constitutive expression in various yeasts (Steinborn et al.
2006; Terentiev et al. 2004). Similarly, the K. pneumoniae hph gene
encoding hygromycin B phosphotransferase, which conferred
hygromycin resistance in a wide range of microorganisms, was
expressed under control of the Ashbya gossypii (Eremothecium
gossypii) TEF1 promoter (Wach et al. 1994) that showed activ-
ity in a range of yeasts (Mazzoni, Serafini and Falcone 2005;
Kim et al. 2010). To avoid RNA modifications that interfere with
biological function, transcription of gRNAs for genome editing
is commonly controlled by RNA polymerase III promoters. By
analogy with expression of gRNA in mammalian cells (Cong
et al. 2013; Mali et al. 2013), the RNA polymerase III SNR52 pro-
moter was used in S. cerevisiae (DiCarlo et al. 2013; Mans et al.
2015), but accurate annotation and characterization of this pro-
moter might not be available for other yeast species. There-
fore, self-processing ribozyme-flanked gRNAs were expressed
from an RNA polymerase II promoter (Gao and Zhao 2014; Ryan
et al. 2014). This concept has already been successfully applied
in several different organisms (Gao et al. 2016; Gorter de Vries
et al. 2017; Weninger et al. 2016). In this system, the gRNA is
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Figure 2. Efficient gRNA targeting in K. lactis CBS 2359 enables marker-free gene deletion. (A) Schematic representation of ADE2 editing upon transformation of CBS

2359 with pUDP025 (gRNAKlADE2) and a repair DNA fragment. The primers for diagnostic PCR of transformants are indicated. (B) Colony morphology of CBS 2359 upon
transformation with pUDP025 and amarker-free 962 bp repair fragment. (C) Diagnosis of 13 randomly picked red Ade− transformants of CBS 2359 upon transformation
with pUDP025 and a 962-bpmarker-free repair fragment. Four transformants (HRmutants 1–4) showed a PCR product of 1177 bp corresponding to the deleted allele. The
control labeled CBS 2359 and nine transformants (NHEJ mutants 5–13) showed a PCR product of 2838 bp corresponding to the wild-type allele. (D) Sanger sequencing

results of purified PCR fragments from nine Ade− mutants (corresponding to mutants 5–13 in panel C) derived from the transformation of CBS 2359 with pUDP025 and
repair fragment.

flanked by a hammerhead and hepatitis delta virus ribozyme
at its 5′ and 3′ end, respectively, resulting in precise release of
mature gRNA after self-cleavage. To ensure sufficient gRNA tran-
scription, the strong glycolytic TDH3 promoter from S. cerevisiae
was used. These elements were combined in plasmid pUDP002,
which could subsequently serve as entry plasmid to insert any
desired gRNA. To streamline integration of ribozyme-flanked gR-
NAs, pUDP002 contained two different BsaI restriction sites be-
tween ScTDH3p and ScCYC1t, enabling directional insertion of
synthetic BsaI-flanked gRNA constructs (Gorter de Vries et al.
2017).

To test the genome-editing efficiency of the pUDP sys-
tem, the ADE2 gene was targeted in all four non-conventional
yeasts used in this study: K. lactis, K. marxianus, O. polymor-
pha and O. parapolymorpha. The ADE2 gene encodes a phos-
phoribosylaminoimidazole carboxylase, also referred to as AIR
carboxylase, involved in adenine biosynthesis. Besides caus-
ing adenine auxotrophy, loss-of-function mutations in ADE2
result in a red-color phenotype due to accumulation of the
oxidized form of 5-amino imidazole ribonucleotide (AIR). This
allows detection of ADE2 targeting by simple visual inspec-
tion of transformation plates (Roman 1956). Therefore, gR-
NAs were designed targeting ADE2 in each species based on
available genome data (Table 3), and gRNA-harboring plasmids
pUDP025, pUDP082 and pUDP013 for deletion of ADE2 in K. lactis,

K. marxianus and O. polymorpha/O. parapolymorpha, respectively,
were constructed.

Efficient CRISPR/Cas9 targeting enables gene deletion
in Kluyveromyces species

To test the effectiveness of the pUDP system in K. lactis,
gRNAKlADE2 was inserted into pUDP002 and the resulting plasmid
pUDP025 was used to target ADE2 in K. lactis CBS 2359. Transfor-
mation with pUDP025 without a repair DNA fragment yielded a
total of 35 transformants of which 19 (54%) exhibited a red Ade−

phenotype. In the presence of a 962-bp repair fragment which
targeted the ADE2 promoter and terminator (Fig. 2A), the trans-
formation of pUDP025 yielded 26 red transformants out of a total
27 (96%) (Fig. 2B). In comparison, transformation of the backbone
plasmid pUDP002, which does not express a gRNA, generated a
number of transformants that was ca. 35-fold higher, none of
which displayed a red phenotype. This difference in transfor-
mation efficiency already provided information about the qual-
ity of the gRNA and the editing. Unless repaired a chromoso-
mal DSB should be lethal, therefore this 35-fold drop in transfor-
mation efficiency would represent the fraction of transformants
that did not successfully repair the CRISPR-Cas9 induced break
and subsequently died from it. Out of the 26 Ade− transformants
obtained after co-transformation with pUDP025 and repair
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Figure 3. Efficient gRNA targeting enables marker-free gene deletion in haploid K. marxianus NBRC 1777 and gene disruption in diploid K. marxianus CBS 397. (A)
Schematic representation of the ADE2 editing upon transformation of NBRC 1777 with pUDP082 (gRNAKmADE2) and a repair DNA fragment. The primers for diagnostic

PCR of transformants are indicated. (B) Diagnosis of 13 randomly picked red Ade− transformants of NBRC 1777 upon transformation with pUDP082 and a 959-bp
marker-free repair fragment. Three transformants (HR mutants 1–3) showed a PCR product of 1218 bp corresponding to the deleted allele. The control labeled NBRC
1777 and 10 transformants (NHEJ mutants 4–13) showed a PCR product of 2915 bp corresponding to the wild-type allele. (C) Sanger sequencing results of purified PCR
fragments from 10 Ade− mutants (corresponding to mutants 4–13 in panel B) derived from the transformation of NBRC 1777 with pUDP082 and repair fragment. (D)

Sanger sequencing results of purified PCR fragments of 10 randomly picked red Ade− mutants derived from the transformation of CBS 397 with pUDP082 and repair
fragment.

fragment, 13 red colonies were randomly picked and analyzed
by diagnostic PCR, revealing two distinct groups. Nine colonies
exhibited a normally sized ADE2 locus, while four colonies (31%)
showed a PCR-fragment size compatible with complete deletion
of the KlADE2 ORF (Fig. 2C). Subsequent Sanger sequencing of
the amplified fragments derived from the nine clones exhibit-
ing an ADE2 wild-type size band identified the presence of in-
dels at the targeted site. These indels reflected imperfect re-
pair of the Cas9-induced DSB via NHEJ, resulting in introduction
of loss-of-function mutations and disruption of the Cas9 target
site (Fig. 2D). These results demonstrated that the pUDP system
could be used for efficient targeting of the ADE2 gene in K. lac-
tis CBS 2359, resulting in repair by either HR or NHEJ DNA repair
mechanisms.

The pUDP system was similarly tested in K. marxianus by tar-
geting ADE2 in the haploid strain NBRC 1777 and the diploid
strain CBS 397, using plasmid pUDP082 expressing gRNAKmADE2.
The transformation of K. marxianus NBRC 1777 with pUDP082,
without and with a 959-bp repair DNA fragment resulted in
13 and 30 transformants, respectively. Of these, 13 out of 13
and 29 out of 30 transformants were red, indicating success-
ful disruption of ADE2 in both cases. To determine which re-
pair mechanism contributed to the repair of the Cas9-induced
DSB in the presence of the repair fragment, 13 randomly picked
red transformants were subjected to diagnostic PCR. Similar
to the results obtained in K. lactis, two groups of transfor-
mants were identified. Three transformants (24%) showed a

genotype corresponding to the repair of the DSB with the re-
pair fragment (Fig. 3A and B), while the remaining transfor-
mants exhibited a PCR result that was undistinguishable from
that of the NBRC 1777 ADE2 wild-type locus. Sanger sequenc-
ing of the Cas9 target site again revealed the presence of indels,
leading to nonsense mutations in the ADE2 coding sequence
(Fig. 3C).

When the diploid strain CBS 397 was transformed with
pUDP082 without repair DNA fragment, 106 out of 133 (80%) of
the colonieswere red,while 117 out of 143 (82%) colonies showed
the red phenotype when a 959-bp repair fragment was provided.
In comparison, a control transformation with pUDP002 yielded
262 transformants without any red phenotypes. From the trans-
formation with pUDP082 and repair fragment, 10 red colonies
were randomly picked and analyzed by diagnostic PCR, result-
ing in PCR products that were identical in size to the nativeADE2
locus in all cases. Sanger sequencing of the same mutants con-
firmed the link between the red-colored phenotype and occur-
rence of small indels at the Cas9 cut site, which likely introduced
loss of functionmutations inADE2 (Fig. 3D). Interestingly, Sanger
sequencing also indicated that the editing occurred identically
at both KmADE2 alleles as a clear and continuous sequence was
observed over the cut site. These results demonstrated that the
ADE2 gene can be efficiently targeted by the pUDP system in both
K. marxianus strains, with DNA repair mediated by HR or NHEJ
mechanisms in the haploid strain NBRC 1777 and NHEJ in the
diploid strain CBS 397.

Downloaded from https://academic.oup.com/femsyr/article-abstract/18/3/foy012/4847887
by University College Cork user
on 29 August 2018



10 FEMS Yeast Research, 2018, Vol. 18, No. 3

Figure 4. Prolonged liquid incubation enables gene disruption in O. parapolymorpha CBS 11895 (DL-1). (A) Schematic representation of the potential ADE2 editing upon
transformation of CBS 11895 with pUDP013 (gRNAOpADE2) and a repair DNA fragment. (B) Percentage of red Ade− colonies observed based on phenotypic screening of

CBS 11895 + pUDP013 (gRNAOpADE2) transformants when plated directly after transformation (0 h), or after prolonged liquid incubation of established transformants in
selectivemedium (for 48, 96 and 192 h) and subsequent plating. Mean and standard deviationwere calculatedwith a total of 4411, 4710 and 4301 colonies (obtained after
48, 96 and 192 h, respectively) from two liquid incubation cultures started with single CBS 11895 transformants which were obtained in independent transformations.

No red Ade− mutants were observed when cells were plated directly after transformation. (C) Diagnosis of 10 randomly picked red Ade− colonies of CBS 11895 after
transformation with pUDP013 and 96 h of subsequent liquid incubation under selective conditions. All 10 transformants (NHEJ mutants 1–10) and the control labeled
CBS 11895 showed a PCR product of 2877 bp corresponding to the wild-type allele. (D) Sanger sequencing results of purified PCR fragments from 10 red Ade− colonies
(corresponding to mutants 1–10 in panel B) derived from the transformation of CBS 11895 with pUDP013 and 96 h of subsequent liquid incubation

CRISPR/Cas9 editing enables gene deletion in Ogataea
species

To test the effectiveness of the pUDP system in O. parapolymor-
pha, plasmid pUDP013 harboring gRNAOpADE2 was used to trans-
form strain CBS 11895 (DL-1). Transformations were performed
with or without a 960-bp repair DNA fragment designed to me-
diate HR at the promoter and terminator regions of the OpADE2
gene (Fig. 4A). In presence of the repair fragment, an average
of 298 ± 50 colonies per transformation were obtained, while
a lower average number of 64 ± 9 colonies were counted after
transformation without the repair fragment. In contrast to the
situation in Kluyveromyces species, none of these colonies ex-
hibited a red Ade− phenotype, although the ability of the trans-
formants to grow on selective medium indicated that the plas-
mid was present. The heterologous origin of genetic parts on
pUDP002 might result in a suboptimal expression of the neces-
sary components of the CRISPR-Cas9 machinery in O. parapoly-
morpha. To allow more time for expression of Cas9 and gRNA,
two randomly picked transformants (CBS 11895 + pUDP013)
from independent experiments were incubated for a longer pe-
riod in selective YPD medium. These prolonged liquid incuba-
tion cultures were sampled after 48, 96 and 192 h, and sam-
ples taken at each of these time points were plated on selective
YPD medium. Already after 48 h of incubation, 31 ± 7% of the
plated colonies exhibited the red Ade− phenotype. This fraction
increased to 61± 2%and 63± 2%after 96 and 192 h of incubation,
respectively (Fig. 4B). From a plate obtained after 96 h of liquid

incubation, 10 red colonies were randomly picked and subjected
to diagnostic PCR. All 10 transformants showed a band compat-
ible with the size of the wild-type ADE2 locus (Fig. 4C). As pre-
viously found in K. lactis and K. marxianus, Sanger sequencing
of the ADE2 gene in these 10 transformants (NHEJ #1 to #10)
confirmed the presence of short indels at the Cas9 target site,
which introduced nonsense mutations within ADE2 (Fig. 4D).
The presence of the repair fragment did not change this out-
come: prolonged liquid incubation cultures that were started
from colonies obtained by co-transformation of pUDP013 and
the repair fragment gave rise to identical proportions of Ade−

mutants as those described above. For the closely related species
O. polymorpha, the obtained results were qualitatively compa-
rable. Transformation of strain O. polymorpha CBS 4732 with
pUDP013 did not result in colonies with a red phenotype, neither
in the presence nor in the absence of a 960-bp repair DNA frag-
ment. Also, no mutations in ADE2 were detected as evaluated
by Sanger sequencing of nine randomly picked (white) colonies
from a transformation without the repair fragment. When two
independent transformants (CBS 4732 + pUDP013) were incu-
bated in liquid medium, plating after 192 h yielded 9 ± 1% of
red colonies. These results indicated that the pUDP system pro-
moted less efficient genome editing in the O. polymorpha strain
CBS 4732 than in O. parapolymorpha CBS 11895, although the sys-
tem could be utilized for NHEJ-mediated disruption of the ADE2
gene in both yeasts.

In contrast to S. cerevisiae (Baudin et al. 1993) and
Kluyveromyces species (this study), the HR-mediated DNA
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Figure 5. Construction of IMD001, an O. parapolymorpha ku80 strain that enables low efficiency gene deletion. (A) Schematic representation of the OpKU80 editing upon
transformation of CBS11895 with pUDP046 (gRNAOpKU80). The primers for diagnostic PCR and sequencing of transformants are indicated. (B) Sanger sequencing results
of purified PCR fragments from eight randomly picked colonies derived from the transformation of CBS 11895 with pUDP046 (gRNAOpKU80) and 96 h of subsequent liquid
incubation. The transformants NHEJ #1,NHEJ#2 and NHEJ#8 displayed a wild-type sequence, while mutants NHEJ #3 to #7 included frameshift mutations (C) Schematic

representation of the ADE2 editing upon transformation of O. parapolymorpha IMD001 (CBS 11895 ku80) with pUDP013 (gRNAOpADE2) and a repair DNA fragment. The
primers for the diagnostic PCR of transformants are indicated. (D) Diagnosis of all seven red Ade− colonies obtained (from a total of ca. 1900 colonies) upon transfor-
mation of IMD001 with pUDP013 and a 960-bp marker-repair fragment, and subsequent liquid incubation in selective conditions for 48 h, started directly from the
transformation recovery culture. All mutants showed a PCR product of 1226 bp corresponding to the deleted allele. The control labeled IMD001 showed a PCR product

of 2915 bp corresponding to the wild-type allele.

repair mechanism in Ogataea species is relatively inefficient
(Klinner and Schäfer 2004). The removal of KU80 inO. polymorpha
has been reported to result in a strong reduction of NHEJ in
return favoring the occurrence of HR-mediated DNA repair
(Saraya et al. 2012). To delete KU80 in O. parapolymorpha, plasmid
pUDP046 harboring gRNAOpKU80 was constructed and used
to transform strain CBS 11895 (Fig. 5A). Following the liquid
incubation procedure established for disruption of OpADE2, a
single transformant was picked, incubated in selective YPD
medium for 96 h and plated on selective YPD plates. Of eight
colonies randomly picked and subjected to Sanger sequencing
of the KU80 locus, five (NHEJ #3 to #7) contained a single adenine
nucleotide inserted at the Cas9 targeting site between posi-
tion 340 and 341 of the OpKU80 coding sequencing (A340AA),
resulting in a loss-of-function mutation (Fig. 5B). One of these
transformants was isolated by restreaking three times on
non-selective medium, and renamed IMD001 (Opku80A340AA).

While strain IMD001 was not able to grow on selective
medium indicating loss of pUDP046, complete curation of the
plasmid had to be verified in order to use IMD001 for subsequent
genetic interventions with pUDP plasmids. Circular plasmids
with limited homology to the nuclear DNAhave been reported to
integrate into the genome of Ogataea (Hansenula) yeasts, despite
the presence of an origin of replication on the plasmid (Kunze,
Kang and Gellissen 2009). In particular, upon cultivation under
selective conditions, plasmids were found to have integrated
into the nuclear genome with high variations in copy number
in strain CBS 11895 (DL-1) (Kang et al. 2001). To verify that no
pUDP046 plasmid sequences had recombined into the chromo-
somal DNA of strain IMD001, its genome was sequenced using

Illumina 150-bp pair-end short reads that were mapped onto a
reference comprised of an O. parapolymorpha CBS 11895 genome
assembly (accession number: GCF 000187245.1) and the se-
quence of pUDP046. No reads were found to map onto the
pUDP046 sequence, thus confirming the absence of unwanted
integration of the transformed plasmid into the nuclear genome
and the suitability of O. parapolymorpha IMD001 as a host strain
for further genetic engineering.

To test the impact of the KU80 disruption on the pUDP sys-
tem in O. parapolymorpha, plasmid pUDP013 (gRNAOpADE2) was
used to transform strain IMD001 together with the 960-bp re-
pair DNA fragment. As previously observed for the wild-type
strain O. parapolymorpha CBS 11895, no red Ade− transformants
were observed on the transformation plates. In an attempt to
improve occurrence of homology-mediated repair, a liquid incu-
bation culture was directly inoculated with the transformation
mix, grown for 48 h and then plated on selective YPD medium.
On these plates, only 7 out of ∼1900 colonies exhibited a red
Ade− phenotype, representing a <1% targeting efficiency. Diag-
nostic PCR performed on these seven transformants revealed
that all harbored a deleted ADE2 version compatible with HR-
mediated repair of the CRISPR-Cas9-induced DSB (Fig. 5C and
D). One of the obtainedmutants was further analyzed by Sanger
sequencing, which confirmed scarless integration of the repair
fragment. Longer liquid incubation times of up to 192 h did not
increase the incidence of red colonies after plating. These re-
sults demonstrated that the KU80 disruption abolished NHEJ-
mediated DSB repair in O. parapolymorpha IMD001, and that the
CBS 11895 strain background possesses a basal HR-mediated
DNA repair activity that can be utilized for precise genome
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Figure 6. Simultaneous deletion of OpADE2 and OpYNR1 alleles using a single ribozyme flanked gRNA array in O. parapolymorpha CBS11895. (A) Representation of the
gRNA array expression cassette in pUDP123. The dual gRNA array was under the control of the RNA polymerase II promoter ScTDH3 and ScCYC1 terminator. Each
gRNA was flanked on its 5′ by a hammerhead ribozyme (HH represented in orange) and on its 3′ by a hepatitis delta virus (HDV represented in bronze) ribozyme which
were separated by a 20-bp linker. Upon ribozyme self-cleavage, the mature gRNAs are released. The OpADE2 guiding spacer (in purple), the OpYNR1 guiding spacer (in

yellow) and the constant structural gRNA fragment (in green) are indicated. (B) Schematic representation of the OpADE2 and OpYNR1 loci of CBS11895. The primers for
the validation of transformants are indicated. (C) Sanger sequencing results of OpADE2 and OpYNR1 editing site of five randomly picked red Ade– mutants that have
lost ability to grow on nitrate. Transformant labeled Transf#2 was renamed IMD034.

engineering. However, the low incidence of HR-mediated repair
precludes efficient genome editing unless the desired pheno-
type is easily screenable.

Multiplexed gene targeting in O. parapolymorpha by
expression of double ribozyme-flanked gRNA array

As recently demonstrated, HH-HDV ribozyme-flanked gRNAs
can be concatenated into polycistronic arrays enabling multi-
plexing gene editing in S. pastorianus (Gorter de Vries et al. 2017)
and transcriptional interference in S. cerevisiae (Deaner, Mejia
and Alper 2017). To explore this possibility in O. parapolymor-
pha, a gRNA expression plasmid pUDP123 carrying spacers tar-
geting OpADE2 and OpYNR1 was designed. The additionally tar-
geted YNR1 gene encodes a nitrate reductase, which is involved
in utilization of nitrate asN-source (Brito et al. 1996; Navarro et al.
2003). Ogataea strains harboring a non-functional nitrate reduc-
tase are unable to grow on media with nitrate as sole N-source.

A tandem array of [HH-gRNA-HDV] targeting OpADE2 and
OpYNR1 spaced with a 20-bp linker and expressed under control
of the ScTDH3 promoter as previously described (Gorter de Vries
et al. 2017) was carried by the recombinant plasmid pUDP123
(hph cas9 ScTDH3p-HH-gRNAOpADE2-HDV-HH-gRNAOpYNR1-HDV-
ScCYC1t) that was transformed in O. parapolymorpha CBS 11895
(Fig. 6A). Following the liquid incubation procedure established
for disruption of OpADE2 and OpKU80, a transformant was
picked, incubated in selective YPD medium for 96 h and then
plated onto selective YPD medium. Of the resulting colonies,

32% were exhibiting a red Ade− phenotype. To verify whether
these Ade– mutants were able or not to grow on nitrate,
94 red transformants were randomly picked and grown on non-
selective medium (YPD). After full growth, 10 μl of cell suspen-
sion was replicated on non-selective (SM) and selective (SMN)
media supplemented with 15 mg L−1 adenine to complement
the Ade− phenotype. About 10% of the red-phenotype trans-
formants gradually returned white. While one cannot exclude
a reversion of the mutation, the pattern observed would sug-
gest that the replicated red colonies were not pure. Growth of
the transformant on SMN was disturbed by the addition of ade-
nine which might also serve as nitrogen source as O. parapoly-
morpha is equipped with an adenine deaminase. However, since
the adenine concentration remained ∼300-fold lower than the
nitrate concentration, a significant difference between Nit+ and
Nit− strains should be noticeable. Indeed out of the 94 red trans-
formants, 17 showed a strongly reduced growth on SMN sup-
plemented with adenine when compared to the control CBS
11895, and 5 of these potential double mutants were further an-
alyzed by Sanger sequencing. While all five were confirmed to
harbor a frameshift around the CRISPR cut site in OpADE2, only
three transformants were concomitantly exhibiting a frameshift
in OpYNR1 (Fig. 6C). Transformant #2 was isolated by re-
streaking three times on non-selective medium, and renamed
IMD034 (Opade2C120CA Opynr1G397GT). Assuming that all other red
clones that were also growing slowly on SMN medium shared
this genotype, double editing would have occurred at a rate
of 2%–5%.
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Figure 7. Wide-host-range applicability of the pUDP CRISPR/Cas9 system. The
depicted data summarize the ADE2 targeting efficiency (red colonies/total
colonies) of the pUDP system in the four yeast species used in this study. The
pUDP plasmids differ only in their gRNA target specificity: pUDP025, pUDP082

and pUDP013 harbor gRNAKlADE2, gRNAKmADE2 and gRNAOpADE2, respectively. The
results shown for Kluyveromyces species were obtained directly on transforma-
tion plates either with (+) or without (−) co-transformation of a ca. 960-bp
marker-free repair DNA fragment. The results for O. parapolymorpha and O. poly-

morpha were obtained after 96 and 192 h of prolonged liquid incubation (L), re-
spectively, started from colonies that were transformed without a repair frag-
ment. Control transformations (C) with pUDP002 did not result in the occurrence

of Ade− mutants.

DISCUSSION

The pUDP system, which combines generic DNA parts with ex-
pression of self-processing gRNAs driven by RNA polymerase II,
was shown to enable genome editing in different yeasts belong-
ing to the Saccharomycotina subphylum. The pUDP002 entry plas-
mid only required insertion of a functional gRNA to enable suc-
cessful single deletion or disruption of the ADE2 gene in four
different species of Kluyveromyces and Ogataea yeasts (Fig. 7) but
also double editing at two different chromosomal loci in O. para-
polymorpha. The panARS(OPT)-harboring pUDP plasmids can be
cured simply by growth in non-selective medium (Liachko and
Dunham 2014), as illustrated by whole-genome sequencing of
engineered O. parapolymorpha strain IMD001, enabling sequen-
tial rounds of genetic modifications with the same system in
rapid succession.

In Kluyveromyces species, near-perfect targeting (≥96%) and
HR-mediated repair DNA integration occurred at practicable
rates in K. lactis CBS 2359 (31%) and the haploid K. marxi-
anus NBCR 1777 (24%), while highly efficient gene disruption
was achieved in the diploid K. marxianus strain CBS 397. In
Ogataea species, mutants could be obtained after prolonged liq-
uid incubation, allowing relatively straightforward and marker-
free disruption of genes in the two industrially relevant
O. (para)polymorpha strains CBS 4732 and CBS 11895 (DL-1). The
observed delay in targeting activity suggests that the heterolo-
gous origin of functional parts of the pUDP system might reflect
suboptimal expression of gRNA and/or Cas9 in Ogataea species.
The expression levels of gRNA and Cas9 may have narrow op-
tima for efficient genome editing, as recently demonstrated in
P. pastoris, a related methylotrophic yeast (Weninger et al. 2016).
While the A. adeninivorans TEF1 promoter employed for Cas9 ex-
pression in this study has been demonstrated to enable strong

constitutive expression in O. polymorpha (Terentiev et al. 2004),
optimization of the gRNA expression presently under the control
of the S. cerevisiae TDH3 promoter might be envisaged to elimi-
nate the observed delay in the occurrence of mutants.

Recently, species-specific CRISPR-Cas9 systems have been
published for a range of non-conventional yeasts including K.
lactis, K. marxianus and O. polymorpha (Horwitz et al. 2015; Löbs
et al. 2017; Nambu-Nishida et al. 2017; Numamoto et al. 2017).
To our knowledge, the study by Horwitz et al. (2015) is the only
published application of CRISPR-Cas9 in K. lactis. The authors
report Cas9-mediated integration at three genomic loci simul-
taneously, which occurred at a rate of 2% in a NHEJ-deficient
strain with an integrated Cas9 cassette using ca. 1000-bp ho-
mology flanks. However, data on targeting efficiency were not
provided, preventing a meaningful comparison with the results
obtained by the pUDP system in this study (96% targeting effi-
ciency, 31% HR-rate, wild-type K. lactis strain, ca. 480-bp homol-
ogy flanks, single locus). However, the absolute quantification of
the HR-mediated repair left no doubt regarding pUDP tool effi-
cacy for gene editing in K. lactis. In K. marxianus NBRC 1777, the
pUDP system achieved higher targeting efficiencies (97% vs 65%)
and similar efficiencies of marker-free HR (22% vs 38%) com-
pared to themost efficient CRISPR system for this yeast reported
to date (Nambu-Nishida et al. 2017). However, in this compari-
son it should be taken into account that, in this study, longer
homology flanks were used (480 bp vs 50 bp), which may have
facilitated HR-mediated repair. The published CRISPR-Cas9 tool
for O. polymorpha (Numamoto et al. 2017) used strain BY4330, a
mutant derived from the O. polymorpha NCYC495 background
which is closely related to strain CBS 4732 employed in this
study. Compared to this tool, the pUDP system achieved sim-
ilar efficiencies of NHEJ-mediated gene disruption when com-
pared with O. parapolymorpha CBS 11895 (61% vs 71%), but was
less effective when compared with O. polymorpha CBS 4732 (9%
vs 71%). In contrast to our findings, the authors were able to
obtain gene-disrupted and marker-integrated transformants di-
rectly on transformation plates, indicating either amore suitable
expression of gRNA and/or Cas9 or a different genetic tractabil-
ity of the strain lineages. Compared to the pUDP system, all
three discussed CRISPR/Cas9 tools (partially) rely on species-
specific genetic parts. The pKD1 stability element was employed
for plasmid replication in K. lactis (Horwitz et al. 2015), while the
KmSNR52 promoter was used for gRNA expression in the case of
K. marxianus (Nambu-Nishida et al. 2017), and an OptRNALeu pro-
moter for gRNA expression in O. polymorpha (Numamoto et al.
2017). These RNA polymerase III-dependent promoters are un-
likely to function in other species or genera.

RNA polymerase III-driven SpCas9-based editing strategies,
such as those based on chimeric gRNA expression systems,
are not easily compatible with multiplexed genome editing.
Hitherto, the maximum number of gRNAs shown to enable si-
multaneous DSBs at different loci in S. cerevisiae is six. How-
ever, this result required an elaborate construction scheme us-
ing three plasmids for the individual expression of each gRNA
(Mans et al. 2015). In contrast, ribozyme-flanked gRNA expres-
sion, as previously reported in S. pastorianus (Gorter de Vries
et al. 2017), allowed to achieve the first double gene editing in O.
parapolymorpha using a polycistronic gRNA array including two
ribozyme-flanked spacers. The RNA polymerase II expression
certainly facilitated to increase and to a greater extendmodulate
the expression of the gRNA. The expression of multiple gRNAs
could be used as well to enhance gene deletion, even in absence
of efficient HR, by providing the possibility to induce double cuts
around the target gene which could result in a complete gene
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deletion even when repaired by NHEJ. Exploring and increasing
the efficiency of multiplexed editing ability will be instrumental
to further unlock genetic tractability of non-conventional yeasts.

In addition to the challenge of introducing DSBs quickly and
efficiently, CRISPR-Cas9-mediated genome engineering in non-
conventional yeasts is limited by their intrinsic ability for HR-
mediated DNA repair, as illustrated in this study and by other
previously developed CRISPR tools (Nambu-Nishida et al. 2017;
Numamoto et al. 2017; Weninger et al. 2016). While low HR activ-
ity can often be compensated for by working in a NHEJ-deficient
background, such strains may have undesirable properties, e.g.
higher stress sensitivity (Nielsen, Nielsen and Mortensen 2008;
Takahashi, Masuda and Koyama 2006) and reduction of cel-
lular fitness (Snoek et al. 2009), which might only emerge af-
ter prolonged cultivation. For example, the commonly targeted
KU70/80 complex is involved in telomere maintenance, and dis-
ruption of the complex results in telomere shortening (Boulton
and Jackson 1996), altered position of telomeric DNA in the nu-
cleus (Laroche et al. 1998) and promotes telomere degradation
and recombination (Polotnianka, Li and Lustig 1998). As an al-
ternative to inactivating NHEJ, Rad52, a highly conserved pro-
tein which plays an important role in HR-mediated DNA repair
in yeasts and other organisms (Symington 2002), has been ex-
ploited to improve the efficiency of HR. Expression (Di Primio
et al. 2005) or protein delivery (Kalvala et al. 2010) of S. cerevisiae
derived Rad52 as well as the utilization of a recently described
Cas9-ScRad52 fusion protein (Shao et al. 2017) increased HR rates
in mammalian cells. However, overexpression of KlRad52 in K.
lactis did not have a beneficial effect (Kooistra, Hooykaas and
Steensma 2004). Another approach to optimize HR could be cell
cycle synchronization and transformation of cells in S-phase,
during which cells exhibit the highest ratio of HR over NHEJ
(Barlow and Rothstein 2010; Chapman, Taylor and Boulton 2012,
Karanam et al. 2012). Cell arrest in S-phase with hydroxyurea in-
deed led to increased rates of HR in various (non-conventional)
yeasts (Tsakraklides et al. 2015).

To conclude, the pUDP CRISPR/Cas9 system presented here
has been shown to work in four different species of yeasts be-
longing to the Saccharomycotina, limited by host-dependent tar-
geting efficiency and intrinsic HR capability.We expect the pUDP
system to be also applicable for Cas9-mediated genome engi-
neering in other industrially relevant Saccharomycotina yeasts.
The approach presented in this study demonstrates the poten-
tial ofwide host-range tools for genome editing. Although highly
efficient genome editing is likely to require species-specific char-
acteristics, the pUDP system can be used for rapid introduc-
tion of screenable mutations (e.g. auxotrophic markers) and, as
demonstrated for O. parapolymorpha, the elimination of NHEJ.
Moreover, due to its broad host range, the pUDP plasmid can
serve as a starting point for optimization of Cas9-mediated gene
targeting in individual yeast species by promoter and terminator
replacement studies.
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