31 research outputs found
Metabolic alterations in prostate cancer pathogenesis
El contenido del capítulo de "resultados y discusión" está sujeto a confidencialidad. 238 p.Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs thatsustain cell growth, proliferation and promote cancer initiation and progression. In this thesis workwe describe a novel molecular mechanism by which mTORC1 regulates polyamine dynamics, ametabolic route that is essential for oncogenicity. Through the integrative metabolomics analysisof a mouse model and human biopsies of prostate cancer, we identified alterations in tumorsimpacting on the production of decarboxylated S-Adenosylmethionine (dcSAM) and polyaminesynthesis. Mechanistically, we demonstrate that this metabolic rewiring stems from mTORC1-mediated post-transcriptional control of S-Adenosylmethionine decarboxylase 1 (AMD1). Thisnovel molecular regulation was pharmacologically validated in samples from murine pre-clinicaland human clinical trials with Everolimus. Importantly, we demonstrate that manipulation of AMD1levels and activity dictates prostate cancer oncogenicity. The results in this thesis providefundamental information about the complex regulatory landscape controlled by mTORC1 tointegrate and translate growth signals into an oncogenic metabolic program
Metabolic alterations in prostate cancer pathogenesis
El contenido del capítulo de "resultados y discusión" está sujeto a confidencialidad. 238 p.Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs thatsustain cell growth, proliferation and promote cancer initiation and progression. In this thesis workwe describe a novel molecular mechanism by which mTORC1 regulates polyamine dynamics, ametabolic route that is essential for oncogenicity. Through the integrative metabolomics analysisof a mouse model and human biopsies of prostate cancer, we identified alterations in tumorsimpacting on the production of decarboxylated S-Adenosylmethionine (dcSAM) and polyaminesynthesis. Mechanistically, we demonstrate that this metabolic rewiring stems from mTORC1-mediated post-transcriptional control of S-Adenosylmethionine decarboxylase 1 (AMD1). Thisnovel molecular regulation was pharmacologically validated in samples from murine pre-clinicaland human clinical trials with Everolimus. Importantly, we demonstrate that manipulation of AMD1levels and activity dictates prostate cancer oncogenicity. The results in this thesis providefundamental information about the complex regulatory landscape controlled by mTORC1 tointegrate and translate growth signals into an oncogenic metabolic program
Low-dose statin treatment increases prostate cancer aggressiveness
Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer
PI3K-regulated Glycine N-methyltransferase is required for the development of prostate cancer
[EN] Glycine N-Methyltransferase (GNMT) is a metabolic enzyme that integrates metabolism and epigenetic regulation. The product of GNMT, sarcosine, has been proposed as a prostate cancer biomarker. This enzyme is predominantly expressed in the liver, brain, pancreas, and prostate tissue, where it exhibits distinct regulation. Whereas genetic alterations in GNMT have been associated to prostate cancer risk, its causal contribution to the development of this disease is limited to cell line-based studies and correlative human analyses. Here we integrate human studies, genetic mouse modeling, and cellular systems to characterize the regulation and function of GNMT in prostate cancer. We report that this enzyme is repressed upon activation of the oncogenic Phosphoinositide-3-kinase (PI3K) pathway, which adds complexity to its reported dependency on androgen signaling. Importantly, we demonstrate that expression of GNMT is required for the onset of invasive prostate cancer in a genetic mouse model. Altogether, our results provide further support of the heavy oncogenic signal-dependent regulation of GNMT in prostate cancer.We are grateful to the Carracedo lab for valuable input, to Drs. Ana M. Aransay, James D. Sutherland and F. Elortza for technical advice, and Drs. Michelle Clasquin, Katie Sellers and Katya Marjon at Agios Pharmaceuticals for performing, processing and analyzing the metabolomics experiments. We thank the Basque Biobank for Research (BIOEF) for the support with prostate specimen acquisition and management. A.A-A. was funded by the Basque Government (predoctoral fellowship). V.T. is funded by Fundación Vasca de Innovación e Investigación Sanitarias, BIOEF (BIO15/CA/052), the AECC J.P. Bizkaia, the Basque Department of Health (2016111109) and the MICINN RTI2018-097267-B-I00. I.M. is supported by Fundación Cris Contra el Cáncer (PR_TPD_2020-19). The work of A. Carracedo is supported by the Basque Department of Industry, Tourism and Trade (Elkartek), the department of education (IKERTALDE IT1106-16) and health (RIS3), the BBVA foundation, the MICINN (SAF2016-79381-R; PID2019-108787RB-I00 (FEDER/EU); Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks RED2018-102769-T), the AECC (GCTRA18006CARR), Vencer el Cáncer Foundation, La Caixa Foundation (ID 100010434), under the agreement LCF/PR/HR17/ and the European Research Council (Starting Grant 336343, PoC 754627, Consolidator Grant 819242). CIBERONC was co-funded with FEDER funds and funded by ISCIII. We are grateful for the support of Mondravember and Movembergara. A.E. was supported by MCIN/AEI/10.13039/501100011033 and the EU programme NextGenerationEU/PRTR (IJC2020-043583-I). The work of JM Mato was supported by NIH grant R01CA172086 and SAF2017-88041-R. EB is funded by the MICINN (BFU2016-76872-R (FEDER/EU), PID2019-108112RB-I00, and Excellence Networks SAF2017-90794-REDT)
Low-dose statin treatment increases prostate cancer aggressiveness
Altres ajuts: NM-M was supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya. VT is supported by Fundación Vasca de Innovación e Investigación Sanitarias, BIOEF (BIO15/CA/052), the department of health of the Basque Government (2016111109) and the 2016 grant of the AECC (Junta provincial de Bizkaia). LA, AA-A and LV-J were supported by the Basque Government of education. The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek) and the department of education (IKERTALDE IT1106-16), FERO VIII Fellowship, the BBVA foundation, Severo Ochoa. Excellence Accreditation SEV-2016-0644) and the European Research Council (Starting Grant 336343; Proof of Concept 754627). The participation of AC, VT, NM-M, SF and AZ as part of CIBERONC was co-funded with FEDER funds.Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer
Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer
Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa
Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer
Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkbl alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1(K781), was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination
PTEN mediates Notch-dependent stalk cell arrest in angiogenesis.
Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting approaches, here we show that PTEN is crucial for blocking stalk cell proliferation downstream of Notch, and this is critical for mouse vessel development. Endothelial deletion of PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase that also has nuclear phosphatase-independent functions. We show that both the catalytic and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells' proliferative arrest. These findings define a Notch-PTEN signalling axis as an orchestrator of vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis
Stratification and therapeutic potential of PML in metastatic breast cancer.
Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), Health (2012111086) and Education (PI2012-03), Marie Curie (277043), Movember Foundation (GAP1), ISCIII (PI10/01484, PI13/00031), FERO (VIII Fellowship) and ERC (336343). N.M.-M. and P.A. are supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya and Guipuzcoa, respectively. J.U. and F.S. are Juan de la Cierva Researchers (MINECO). L.A., A.A.-A. and L.V.-J. are supported by the Basque Government of education. M.L.-M.C. acknowledges SAF2014-54658-R and Asociación Española contra el Cancer. R.B. acknowledges Spanish MINECO (BFU2014-52282-P, Consolider BFU2014-57703-REDC), the Departments of Education and Industry of the Basque Government (PI2012/42) and the Bizkaia County. M.S., V.S. and J.B. acknowledge Banco Bilbao Vizcaya Argentaria (BBVA) Foundation (Tumour Biomarker Research Program). M.S. and J.B. are supported by NIH grant P30 CA008748. M.dM.V. is supported by the Institute of Health Carlos III (PI11/02251, PI14/01328) and Basque Government, Health Department (2014111145). A.M. is supported by ISCIII (CP10/00539, PI13/02277) and Marie Curie CIG 2012/712404. V.S. is supported by the SCIII (PI13/01714, CP14/00228), the FERO Foundation and the Catalan Agency AGAUR (2014 SGR 1331). R.R.G. research support is provided by the Spanish Ministry of Science and Innovation grant SAF2013-46196, BBVA Foundation, the Generalitat de Catalunya (2014 SGR 535), Institució Catalana de Recerca i Estudis Avançats, the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (SAF2013-46196).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1259