12 research outputs found

    Characterization of the biological and molecular activity of PML in breast cancer

    Get PDF
    253 p.Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. In this thesis work we demonstrated that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, we observed that growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of cyclin-dependent kinase inhibitor 1B (CDKN1B, p27), a trigger of senescence. In line with this notion, we found that PML is associated to thepromoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.CICbioGUN

    Characterization of the biological and molecular activity of PML in breast cancer

    Get PDF
    253 p.Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. In this thesis work we demonstrated that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, we observed that growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of cyclin-dependent kinase inhibitor 1B (CDKN1B, p27), a trigger of senescence. In line with this notion, we found that PML is associated to thepromoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.CICbioGUN

    Histona desazetilasa inhibitzaileek giza melanoman duten efektuaren azterketa

    Get PDF
    HDAC inhibitzaileek melanoman duten efektua argitzeko asmoz, 5 inhibitzaile testatzen dira A375 eta HT-144 lerro zelularretan. Helburua, teknika desberdinetaz baliatuz, inhibitzaile hauek bideragarritasunean, apoptosian eta morfologian zein efektu duten ikustea izango da

    Low-dose statin treatment increases prostate cancer aggressiveness

    Get PDF
    Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer

    Low-dose statin treatment increases prostate cancer aggressiveness

    Get PDF
    Altres ajuts: NM-M was supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya. VT is supported by Fundación Vasca de Innovación e Investigación Sanitarias, BIOEF (BIO15/CA/052), the department of health of the Basque Government (2016111109) and the 2016 grant of the AECC (Junta provincial de Bizkaia). LA, AA-A and LV-J were supported by the Basque Government of education. The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek) and the department of education (IKERTALDE IT1106-16), FERO VIII Fellowship, the BBVA foundation, Severo Ochoa. Excellence Accreditation SEV-2016-0644) and the European Research Council (Starting Grant 336343; Proof of Concept 754627). The participation of AC, VT, NM-M, SF and AZ as part of CIBERONC was co-funded with FEDER funds.Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer

    Stratification and therapeutic potential of PML in metastatic breast cancer.

    Get PDF
    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), Health (2012111086) and Education (PI2012-03), Marie Curie (277043), Movember Foundation (GAP1), ISCIII (PI10/01484, PI13/00031), FERO (VIII Fellowship) and ERC (336343). N.M.-M. and P.A. are supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya and Guipuzcoa, respectively. J.U. and F.S. are Juan de la Cierva Researchers (MINECO). L.A., A.A.-A. and L.V.-J. are supported by the Basque Government of education. M.L.-M.C. acknowledges SAF2014-54658-R and Asociación Española contra el Cancer. R.B. acknowledges Spanish MINECO (BFU2014-52282-P, Consolider BFU2014-57703-REDC), the Departments of Education and Industry of the Basque Government (PI2012/42) and the Bizkaia County. M.S., V.S. and J.B. acknowledge Banco Bilbao Vizcaya Argentaria (BBVA) Foundation (Tumour Biomarker Research Program). M.S. and J.B. are supported by NIH grant P30 CA008748. M.dM.V. is supported by the Institute of Health Carlos III (PI11/02251, PI14/01328) and Basque Government, Health Department (2014111145). A.M. is supported by ISCIII (CP10/00539, PI13/02277) and Marie Curie CIG 2012/712404. V.S. is supported by the SCIII (PI13/01714, CP14/00228), the FERO Foundation and the Catalan Agency AGAUR (2014 SGR 1331). R.R.G. research support is provided by the Spanish Ministry of Science and Innovation grant SAF2013-46196, BBVA Foundation, the Generalitat de Catalunya (2014 SGR 535), Institució Catalana de Recerca i Estudis Avançats, the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (SAF2013-46196).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1259

    Histona desazetilasa inhibitzaileek giza melanoman duten efektuaren azterketa

    Get PDF
    HDAC inhibitzaileek melanoman duten efektua argitzeko asmoz, 5 inhibitzaile testatzen dira A375 eta HT-144 lerro zelularretan. Helburua, teknika desberdinetaz baliatuz, inhibitzaile hauek bideragarritasunean, apoptosian eta morfologian zein efektu duten ikustea izango da

    Targeting PML in triple negative breast cancer elicits growth suppression and senescence

    Get PDF
    Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.ISSN:1350-9047ISSN:1476-540

    Stratification and therapeutic potential of PML in metastatic breast cancer

    No full text
    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification
    corecore