120 research outputs found

    Role of a Fur homolog in iron metabolism in Nitrosomonas europaea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of <it>Nitrosomonas europaea</it>, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family.</p> <p>Results</p> <p>Of the three <it>N. europaea fur </it>homologs, only the Fur homolog encoded by gene NE0616 complemented the <it>Escherichia coli </it>H1780 <it>fur </it>mutant. A <it>N. europaea fur:kanP </it>mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 <it>fur </it>homolog. The total cellular iron contents of the <it>fur:kanP </it>mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the <it>fur:kanP </it>mutant exhibited increased sensitivity to iron at or above 500 μM concentrations. Unlike the wild type, the <it>fur:kanP </it>mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability.</p> <p>Conclusions</p> <p>Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by <it>N. europaea </it>NE0616 gene. Additional studies are required to fully delineate role of this <it>fur </it>homolog.</p

    Triggered Star Formation in Galaxy Pairs at z=0.08-0.38

    Full text link
    We measure the strength, frequency, and timescale of tidally triggered star formation at redshift z=0.08-0.38 in a spectroscopically complete sample of galaxy pairs drawn from the magnitude-limited redshift survey of 9,825 Smithsonian Hectospec Lensing Survey (SHELS) galaxies with R<20.3. To examine the evidence for tidal triggering, we identify a volume-limited sample of major (|\Delta M_R|1/5) pair galaxies with $M_R < -20.8 in the redshift range z=0.08-0.31. The size and completeness of the spectroscopic survey allows us to focus on regions of low local density. The spectrophotometric calibration enables the use of the 4000 Ang break (D_n4000), the H\alpha specific star formation rate (SSFR_{H\alpha}), and population models to characterize the galaxies. We show that D_n4000 is a useful population classification tool; it closely tracks the identification of emission line galaxies. The sample of major pair galaxies in regions of low local density with low D_n4000 demonstrates the expected anti-correlation between pair-wise projected separation and a set of star formation indicators explored in previous studies. We measure the frequency of triggered star formation by comparing the SSFR_{H\alpha} in the volume-limited sample in regions of low local density: 32 +/-7% of the major pair galaxies have SSFR_{H\alpha} at least double the median rate of the unpaired field galaxies. Comparison of stellar population models for pair and for unpaired field galaxies implies a timescale for triggered star formation of ~300-400 Myr.Comment: 25 pages, 15 figures. Accepted to A

    Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity

    Get PDF
    The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach
    corecore