6 research outputs found

    Distributional chaos for the Forward and Backward Control traffic model

    Get PDF
    The interest in car-following models has increased in the last years due to its connection with vehicle-to-vehicle communications and the development of driverless cars. Some non-linear models such as the Gazes–Herman–Rothery model were already known to be chaotic. We consider the linear Forward and Backward Control traffic model for an infinite number of cars on a track. We show the existence of solutions with a chaotic behaviour by using some results of linear dynamics of C0-semigroups. In contrast, we also analyse which initial configurations lead to stable solutions. © 2015 Elsevier Inc. All rights reserved.The first three authors were supported by MTM2013-47093-P. The first author was supported by the ERC grant HEVO no. 2177691. The third author was also supported by MTM2013-47093-P and by a grant from the FPU program of MEC (AP 2010-4361).Barrachina Civera, X.; Conejero, JA.; Murillo Arcila, M.; Seoane-Sepulveda, JB. (2015). Distributional chaos for the Forward and Backward Control traffic model. Linear Algebra and its Applications. 479:202-215. https://doi.org/10.1016/j.laa.2015.04.010S20221547

    Linear chaos for the Quick-Thinking-Driver model

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-015-9704-6In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car).Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.The authors were supported by a grant from the FPU program of MEC and MEC Project MTM2013-47093-P.Conejero, JA.; Murillo Arcila, M.; Seoane-Sepúlveda, JB. (2016). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum. 92(2):486-493. https://doi.org/10.1007/s00233-015-9704-6S486493922Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Série II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., Lachowicz, M., Moszyński, M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16(3), 303–308 (2003)Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation–stability and chaos. Discret. Contin. Dyn. Syst. 29(1), 67–79 (2011)Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. 457,019, 11 (2012)Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999)Brzeźniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009)Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6, 165–184 (1958)Chung, C.C., Gartner, N.: Acceleration noise as a measure of effectiveness in the operation of traffic control systems. Operations Research Center. Massachusetts Institute of Technology. Cambridge (1973)CNN (2014) Driverless car tech gets serious at CES. http://edition.cnn.com/2014/01/09/tech/innovation/self-driving-cars-ces/ . Accessed 7 Apr 2014Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discret. Contin. Dyn. Syst. 35(2), 653–668 (2015)DARPA Grand Challenge. http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge#2005_Grand_Challengede Laubenfels, R., Emamirad, H., Protopopescu, V.: Linear chaos and approximation. J. Approx. Theory 105(1), 176–187 (2000)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)El Mourchid, S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313–316 (2006)El Mourchid, S., Metafune, G., Rhandi, A., Voigt, J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339(2), 918–924 (2008)El Mourchid, S., Rhandi, A., Vogt, H., Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population. Differ. Integral Equ. 22(7–8), 797–800 (2009)Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000. With contributions by Brendle S., Campiti M., Hahn T., Metafune G., Nickel G., Pallara D., Perazzoli C., Rhandi A., Romanelli S., and Schnaubelt RGodefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)Greenshields, B.D.: The photographic method of studying traffic behavior. In: Proceedings of the 13th Annual Meeting of the Highway Research Board, pp. 382–399 (1934)Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, pp. 448–477 (1935)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Op. Res. 7, 86–106 (1959)Helly, W.: Simulation of Bottleneckes in Single-Lane Traffic Flow. Research Laboratories, General Motors. Elsevier, New York (1953)Li, T.: Nonlinear dynamics of traffic jams. Phys. D 207(1–2), 41–51 (2005)Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342(7), 839–851 (2005)Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351(2), 607–615 (2009)Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953

    Frequency, risk factors, and outcomes of hospital readmissions of COVID-19 patients

    Get PDF
    To determine the proportion of patients with COVID-19 who were readmitted to the hospital and the most common causes and the factors associated with readmission. Multicenter nationwide cohort study in Spain. Patients included in the study were admitted to 147 hospitals from March 1 to April 30, 2020. Readmission was defined as a new hospital admission during the 30 days after discharge. Emergency department visits after discharge were not considered readmission. During the study period 8392 patients were admitted to hospitals participating in the SEMI-COVID-19 network. 298 patients (4.2%) out of 7137 patients were readmitted after being discharged. 1541 (17.7%) died during the index admission and 35 died during hospital readmission (11.7%, p = 0.007). The median time from discharge to readmission was 7 days (IQR 3-15 days). The most frequent causes of hospital readmission were worsening of previous pneumonia (54%), bacterial infection (13%), venous thromboembolism (5%), and heart failure (5%). Age [odds ratio (OR): 1.02; 95% confident interval (95% CI): 1.01-1.03], age-adjusted Charlson comorbidity index score (OR: 1.13; 95% CI: 1.06-1.21), chronic obstructive pulmonary disease (OR: 1.84; 95% CI: 1.26-2.69), asthma (OR: 1.52; 95% CI: 1.04-2.22), hemoglobin level at admission (OR: 0.92; 95% CI: 0.86-0.99), ground-glass opacification at admission (OR: 0.86; 95% CI:0.76-0.98) and glucocorticoid treatment (OR: 1.29; 95% CI: 1.00-1.66) were independently associated with hospital readmission. The rate of readmission after hospital discharge for COVID-19 was low. Advanced age and comorbidity were associated with increased risk of readmission

    Distributionally chaotic families of operators on Fréchet spaces

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Communications on Pure and Applied Analysis (CPAA) following peer review. The definitive publisher-authenticated version Conejero, J. A., Kostić, M., Miana, P. J., & Murillo-Arcila, M. (2016). Distributionally chaotic families of operators on Fréchet spaces.Communications on Pure and Applied Analysis, 2016, vol. 15, no 5, p. 1915-1939, is available online at: http://dx.doi.org/10.3934/cpaa.2016022The existence of distributional chaos and distributional irregular vectors has been recently considered in the study of linear dynamics of operators and C-0-semigroups. In this paper we extend some previous results on both notions to sequences of operators, C-0-semigroups, C-regularized semigroups, and alpha-timesintegrated semigroups on Frechet spaces. We also add a study of rescaled distributionally chaotic C-0-semigroups. Some examples are provided to illustrate all these results.The first and fourth authors are supported in part by MEC Project MTM2010-14909, MTM2013-47093-P, and Programa de Investigacion y Desarrollo de la UPV, Ref. SP20120700. The second author is partially supported by grant 174024 of Ministry of Science and Technological Development, Republic of Serbia. The third author has been partially supported by Project MTM2013-42105-P, DGI-FEDER, of the MCYTS; Project E-64, D.G. Aragon, and Project UZCUD2014-CIE-09, Universidad de Zaragoza. The fourth author is supported by a grant of the FPU Program of Ministry of education of Spain.Conejero, JA.; Kostic, M.; Miana Sanz, PJ.; Murillo Arcila, M. (2016). Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure and Applied Analysis. 15(5):1915-1939. https://doi.org/10.3934/cpaa.2016022S1915193915
    corecore