10 research outputs found

    Prediction of outcomes after acute kidney injury in hospitalised patients: protocol for a systematic review

    No full text
    Introduction Acute kidney injury (AKI) is common and is associated with negative long-term outcomes. Given the heterogeneity of the syndrome, the ability to predict outcomes of AKI may be beneficial towards effectively using resources and personalising AKI care. This systematic review will identify, describe and assess current models in the literature for the prediction of outcomes in hospitalised patients with AKI.Methods and analysis Relevant literature from a comprehensive search across six databases will be imported into Covidence. Abstract screening and full-text review will be conducted independently by two team members, and any conflicts will be resolved by a third member. Studies to be included are cohort studies and randomised controlled trials with at least 100 subjects, adult hospitalised patients, with AKI. Only those studies evaluating multivariable predictive models reporting a statistical measure of accuracy (area under the receiver operating curve or C-statistic) and predicting resolution of AKI, progression of AKI, subsequent dialysis and mortality will be included. Data extraction will be performed independently by two team members, with a third reviewer available to resolve conflicts. Results will be reported using Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Risk of bias will be assessed using Prediction model Risk Of Bias ASsessment Tool.Ethics and dissemination We are committed to open dissemination of our results through the registration of our systematic review on PROSPERO and future publication. We hope that our review provides a platform for future work in realm of using artificial intelligence to predict outcomes of common diseases.PROSPERO registration number CRD42019137274

    High Heme and Low Heme Oxygenase-1 Are Associated with Mast Cell Activation/Degranulation in HIV-Induced Chronic Widespread Pain

    No full text
    An overwhelming number of people with HIV (PWH) experience chronic widespread pain (CWP) throughout their lifetimes. Previously, we demonstrated that PWH with CWP have increased hemolysis and attenuated heme oxygenase 1 (HO-1) levels. HO-1 degrades reactive, cell-free heme into antioxidants like biliverdin and carbon monoxide (CO). We found that high heme or low HO-1 caused hyperalgesia in animals, likely through multiple mechanisms. In this study, we hypothesized that high heme or low HO-1 caused mast cell activation/degranulation, resulting in the release of pain mediators like histamine and bradykinin. PWH who self-report CWP were recruited from the University of Alabama at Birmingham HIV clinic. Animal models included HO-1−/− mice and hemolytic mice, where C57BL/6 mice were injected intraperitoneally with phenylhydrazine hydrochloride (PHZ). Results demonstrated that plasma histamine and bradykinin were elevated in PWH with CWP. These pain mediators were also high in HO-1−/− mice and in hemolytic mice. Both in vivo and in vitro (RBL-2H3 mast cells), heme-induced mast cell degranulation was inhibited by treatment with CORM-A1, a CO donor. CORM-A1 also attenuated mechanical and thermal (cold) allodynia in hemolytic mice. Together, the data suggest that mast cell activation secondary to high heme or low HO-1 seen in cells and animals correlates with elevated plasma levels of heme, histamine, and bradykinin in PWH with CWP

    Heme-Induced Macrophage Phenotype Switching and Impaired Endogenous Opioid Homeostasis Correlate with Chronic Widespread Pain in HIV

    No full text
    Chronic widespread pain (CWP) is associated with a high rate of disability and decreased quality of life in people with HIV-1 (PWH). We previously showed that PWH with CWP have increased hemolysis and elevated plasma levels of cell-free heme, which correlate with low endogenous opioid levels in leukocytes. Further, we demonstrated that cell-free heme impairs β-endorphin synthesis/release from leukocytes. However, the cellular mechanisms by which heme dampens β-endorphin production are inconclusive. The current hypothesis is that heme-dependent TLR4 activation and macrophage polarization to the M1 phenotype mediate this phenomenon. Our novel findings showed that PWH with CWP have elevated M1-specific macrophage chemokines (ENA-78, GRO-α, and IP-10) in plasma. In vitro, hemin-induced polarization of M0 and M2 macrophages to the M1 phenotype with low β-endorphins was mitigated by treating cells with the TLR4 inhibitor, TAK-242. Similarly, in vivo phenylhydrazine hydrochloride (PHZ), an inducer of hemolysis, injected into C57Bl/6 mice increased the M1/M2 cell ratio and reduced β-endorphin levels. However, treating these animals with the heme-scavenging protein hemopexin (Hx) or TAK-242 reduced the M1/M2 ratio and increased β-endorphins. Furthermore, Hx attenuated heme-induced mechanical, heat, and cold hypersensitivity, while TAK-242 abrogated hypersensitivity to mechanical and heat stimuli. Overall, these results suggest that heme-mediated TLR4 activation and M1 polarization of macrophages correlate with impaired endogenous opioid homeostasis and hypersensitivity in people with HIV

    Integrating Patient Priorities with Science by Community Engagement in the Kidney Precision Medicine Project

    No full text
    The Kidney Precision Medicine Project (KPMP) is a multisite study designed to improve understanding of CKD attributed to diabetes or hypertension and AKI by performing protocol-driven kidney biopsies. Study participants and their kidney tissue samples undergo state-of-the-art deep phenotyping using advanced molecular, imaging, and data analytical methods. Few patients participate in research design or concepts for discovery science. A major goal of the KPMP is to include patients as equal partners to inform the research for clinically relevant benefit. The purpose of this report is to describe patient and community engagement and the value they bring to the KPMP. Patients with CKD and AKI and clinicians from the study sites are members of the Community Engagement Committee, with representation on other KPMP committees. They participate in KPMP deliberations to address scientific, clinical, logistic, analytic, ethical, and community engagement issues. The Community Engagement Committee guides KPMP research priorities from perspectives of patients and clinicians. Patients led development of essential study components, including the informed consent process, no-fault harm insurance coverage, the ethics statement, return of results plan, a Patient Primer for scientists and the public, and Community Advisory Boards. As members across other KPMP committees, the Community Engagement Committee assures that the science is developed and conducted in a manner relevant to study participants and the clinical community. Patients have guided the KPMP to produce research aligned with their priorities. The Community Engagement Committee partnership has set new benchmarks for patient leadership in precision medicine research

    Outcomes of critically ill solid organ transplant patients with COVID‐19 in the United States

    No full text
    corecore