431 research outputs found

    The Multi-object, Fiber-fed Spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey

    Get PDF
    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg^2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances

    High temperature and humidity affect pollen viability and longevity in Olea europaea L.

    Get PDF
    Olea europaea L. is a crop typical of the Mediterranean area that has an important role in economy, society, and culture of this region. Climate change is expected to have significant impact on this crop, which is typically adapted to certain pedo-climatic characteristics of restricted geographic areas. In this scenario, the aim of this study was to evaluate the time-course response of pollen viability to different combinations of temperature and humidity. The study was performed comparing flowering time and pollen functionality of O. europaea from twelve cultivars growing at the same site belonging to the Campania olive collection in Italy. Pollen was incubated at 12◦C, 22◦C, and 36◦C in combination with 50% RH or 100% RH treatments for 5 days. The results highlighted that a drastic loss of pollen viability occurs when pollen is subjected to a combination of high humidity and high temperature, whereas 50% RH had less impact on pollen thermotolerance, because most cultivars preserved a high pollen viability over time. In the ongoing climate change scenario, it is critical to assess the effect of increasing temperatures on sensitive reproductive traits such as pollen viability to predict possible reduction in crop yield. Moreover, the results highlighted that the effect of temperature increase on pollen thermotolerance should be evaluated in combination with other environmental factors such as humidity conditions. The screening of olive cultivars based on pollen thermotolerance is critical in the ongoing climate change scenario, especially considering that the economic value of this species relies on successful fertilization and embryo development, and also that production cycle of Olea europaea can be longer than a hundred years

    Influence of the Nb/P ratio of acidic Nb-P-Si oxides on surface and catalytic properties

    Get PDF
    In this work, two acidic Nb-P-Si mixed oxide gel-derived materials characterized by Nb/P molar ratios equal to 2 (5Nb2.5 P) and 1 (2.5NbP) were investigated for their surface and bulk properties in relation with the catalytic performances in the fructose dehydration reaction. The structural characteristics of the studied samples and the changes occurring after water treatment and after reaction were investigated by 29Si and 31P solid state nuclear magnetic resonance (MAS-NMR) and X-ray photoelectron (XPS) spectroscopies, while the characterization of their acidic properties was performed by base (2-phenylethylamine) adsorption in liquid phase. MAS-NMR showed that the phosphorus remains firmly anchored into the siloxane matrix after exposure to cold water for 5Nb2.5 P sample and XPS confirmed the homogeneity of the sample composition. Both samples exhibited good intrinsic acidity and maintained significant effective acidity in polar-protic liquids; 2.5NbP manifested a double amount of acid sites compared to 5Nb2.5 P, when 2-phenylethylamine is used as probe. Fructose dehydration to 5-(hydroxymethyl)furfural (HMF) on the two gel-derived catalysts was performed in water and in water-isopropanol solution under mild conditions (130 °C) working in a recirculation reaction line comprising a tubular catalytic reactor. In water-isopropanol solution, the samples displayed good performances, as expected thanks to the lively effective acidity. Around 45-50% fructose conversion was attained on both samples, with selectivity to HMF equal to about 50% on 2.5NbP gel-derived catalyst. Recycling tests showed satisfactorily stable activity during three consecutive runs

    COVID-19 and the elderly: insights into pathogenesis and clinical decision-making

    Get PDF
    The elderly may represent a specific cluster of high-risk patients for developing COVID-19 with rapidly progressive clinical deterioration. Indeed, in older individuals, immunosenescence and comorbid disorders are more likely to promote viral-induced cytokine storm resulting in life-threatening respiratory failure and multisystemic involvement. Early diagnosis and individualized therapeutic management should be developed for elderly subjects based on personal medical history and polypharmacotherapy. Our review examines the pathogenesis and clinical implications of ageing in COVID-19 patients; finally, we discuss the evidence and controversies in the management in the long-stay residential care homes and aspects of end-of-life care for elderly patients with COVID-19

    The Sloan Digital Sky Survey Quasar Catalog I. Early Data Release

    Get PDF
    We present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects (3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half maximum larger than 1000 km/s, luminosities brighter than M_i^* = -23, and highly reliable redshifts. The area covered by the catalog is 494 square degrees; the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0.2" rms per coordinate, five band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800 to 9200 Angstroms at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.Comment: 27 pages, 4 figures, 4 tables, accepted by A

    A pilot study of cardiac MRI in breast cancer survivors after cardiotoxic chemotherapy and three-dimensional conformal radiotherapy

    Get PDF
    Purpose/Objectives: Node-positive breast cancer patients often receive chemotherapy and regional nodal irradiation. The cardiotoxic effects of these treatments, however, may offset some of the survival benefit. Cardiac magnetic resonance (CMR) is an emerging modality to assess cardiac injury. This is a pilot trial assessing cardiac damage using CMR in patients who received anthracycline-based chemotherapy and three-dimensional conformal radiotherapy (3DCRT) regional nodal irradiation using heart constraints. Materials and Methods: Node-positive breast cancer patients (2000-2008) treated with anthracycline-based chemotherapy and 3DCRT regional nodal irradiation (including the internal mammary chain nodes) with heart ventricular constraints (V25 \u3c 10%) were invited to participate. Cardiac tissues were contoured and analyzed separately for whole heart (pericardium) and for combined ventricles and left atrium (myocardium). CMR obtained ventricular function/dimensions, late gadolinium enhancement (LGE), global longitudinal strain (GLS), and extracellular volume fraction (ECV) as measures of cardiac injury and/or early fibrosis. CMR parameters were correlated with dose-volume constraints using Spearman correlations. Results: Fifteen left-sided and five right-sided patients underwent CMR. Median diagnosis age was 50 (32-77). No patients had baseline cardiac disease before regional nodal irradiation. Median time after 3DCRT was 8.3 years (5.2-14.4). Median left-sided mean heart dose (MHD) was 4.8 Gy (1.1-11.2) and V25 was 5.7% (0-12%). Median left ventricular ejection fraction (LVEF) was 63%. No abnormal LGE was observed. No correlations were seen between whole heart doses and LVEF, LV mass, GLS, or LV dimensions. Increasing ECV did not correlate with increased heart or ventricular doses. However, correlations between higher LV mass and ventricular mean dose, V10, and V25 were seen. Conclusion: At a median follow-up of 8.3 years, this cohort of node-positive breast cancer patients who received anthracycline-based chemotherapy and regional nodal irradiation had no clinically abnormal CMR findings. However, correlations between ventricular mean dose, V10, and V25 and LV mass were seen. Larger corroborating studies that include advanced techniques for measuring regional heart mechanics are warranted

    Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System

    Full text link
    We present an empirical investigation of the colors of quasars in the Sloan Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625 quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide stripe centered on the Celestial Equator covering 529\sim529 square degrees. Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS spectroscopic commissioning. New SDSS quasars represent an increase of over 200% in the number of known quasars in this area of the sky. The ensemble average of the observed colors of quasars in the SDSS passbands are well represented by a power-law continuum with αν=0.5\alpha_{\nu} = -0.5 (fνναf_{\nu} \propto \nu^{\alpha}). However, the contributions of the 3000A˚3000 {\rm \AA} bump and other strong emission lines have a significant effect upon the colors. The color-redshift relation exhibits considerable structure, which may be of use in determining photometric redshifts for quasars. The range of colors can be accounted for by a range in the optical spectral index with a distribution αν=0.5±0.65\alpha_{\nu}=-0.5\pm0.65 (95% confidence), but there is a red tail in the distribution. This tail may be a sign of internal reddening. Finally, we show that there is a continuum of properties between quasars and Seyfert galaxies and we test the validity of the traditional division between the two classes of AGN.Comment: 66 pages, 15 figures (3 color), accepted by A

    Galaxy Clustering in Early SDSS Redshift Data

    Get PDF
    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r < 10 Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and M_*+1.5 have real-space correlation functions that are parallel power laws of slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h, and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio

    The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster

    Full text link
    On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed spectrographs saw astronomical first light. This was followed by the first spectroscopic commissioning run during the dark period of June 1999. We present here the first hour of extra-galactic spectroscopy taken during these early commissioning stages: an observation of the Coma cluster of galaxies. Our data samples the Southern part of this cluster, out to a radius of 1.5degrees and thus fully covers the NGC 4839 group. We outline in this paper the main characteristics of the SDSS spectroscopic systems and provide redshifts and spectral classifications for 196 Coma galaxies, of which 45 redshifts are new. For the 151 galaxies in common with the literature, we find excellent agreement between our redshift determinations and the published values. As part of our analysis, we have investigated four different spectral classification algorithms: spectral line strengths, a principal component decomposition, a wavelet analysis and the fitting of spectral synthesis models to the data. We find that a significant fraction (25%) of our observed Coma galaxies show signs of recent star-formation activity and that the velocity dispersion of these active galaxies (emission-line and post-starburst galaxies) is 30% larger than the absorption-line galaxies. We also find no active galaxies within the central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our Coma active galaxies is consistent with that found at higher redshift for the CNOC1 cluster survey. Beyond the core region, the fraction of bright active galaxies appears to rise slowly out to the virial radius and are randomly distributed within the cluster with no apparent correlation with the potential merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table
    corecore