16 research outputs found

    Immunohistochemical Expression of Somatostatin Receptor Subtypes in a Panel of Neuroendocrine Neoplasias

    Get PDF
    Neuroendocrine neoplasias (NENs) are known to express somatostatin receptors (SSTRs) 1-5, which are G-protein-coupled cell membrane receptors. Somatostatin receptor imaging and therapy utilizes the SSTR expression. Synthetic somatostatin analogs with radioligands are used to detect primary tumors, metastases, and recurrent disease. Receptor analogs are also used for treating NENs. Furthermore, commercially available SSTR antibodies can be used for the immunohistochemical (IHC) detection of SSTRs. We investigated different SSTR antibody clones applying diverse IHC protocol settings to identify reliable clones and feasible protocols for NENs. A tissue microarray including NENs from 12 different primary sites were stained. Only UMB clones were able to localize SSTR on the cell membranes of NENs. SSTR2 (UMB1) emerged as the most common subtype followed by SSTR5 (UMB4) and SSTR1 (UMB7). SSTR3 (UMB5) expression was mainly cytoplasmic. Yet, SSTR4 expression was weak and located primarily in the cytoplasm. Thus, appropriate IHC protocols, including proper positive and negative controls, represent requirements for high-quality NEN diagnostics and for planning personalized therapy.Peer reviewe

    Hydroxysteroid 17-beta dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease

    Get PDF
    Carriers of the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene variant (rs72613567:TA) have a reduced risk of NASH and cirrhosis but not steatosis. We determined its effect on liver histology, lipidome, and transcriptome using ultra performance liquid chromatography-mass spectrometry and RNA-seq. In carriers and noncarriers of the gene variant, we also measured pathways of hepatic fatty acids (de novo lipogenesis [ONLI and adipose tissue lipolysis [ATL] using (H2O)-H-2 and H-2-glycerol) and insulin sensitivity using H-3-glucose and euglycemic-hyperinsulinemic clamp) and plasma cytokines. Carriers and noncarriers had similar age, sex and BMI. Fibrosis was significantly less frequent while phospholipids, but not other lipids, were enriched in the liver in carriers compared with noncarriers. Expression of 274 genes was altered in carriers compared with noncarriers, consisting predominantly of downregulated inflammation-related gene sets. Plasma IL-6 concentrations were lower, but DNL, ATL and hepatic insulin sensitivity were similar between the groups. In conclusion, carriers of the HSD17B13 variant have decreased fibrosis and expression of inflammation-related genes but increased phospholipids in the liver. These changes are not secondary to steatosis, ONL, ATL, or hepatic insulin sensitivity. The increase in phospholipids and decrease in fibrosis are opposite to features of choline-deficient models of liver disease and suggest HSD17B13 as an attractive therapeutic target.Peer reviewe

    Risk assessment of gypsum amendment on agricultural fields : Effects of sulfate on riverine biota

    No full text
    Gypsum (CaSO4∙2H2O) amendment is a promising way of decreasing the phosphorus loading of arable lands, and thus preventing aquatic eutrophication. However, in freshwaters with low sulfate concentrations, gypsum-released sulfate may pose a threat to the biota. To assess such risks, we performed a series of sulfate toxicity tests in the laboratory and conducted field surveys. These field surveys were associated with a large-scale pilot exercise involving spreading gypsum on agricultural fields covering 18% of the Savijoki River (Finland) catchment area. The gypsum amendment in such fields resulted in approximately a four-fold increase in the mean sulfate concentration for a 2-month period, and a transient, early peak reaching approximately 220 mg/L. The sulfate concentration gradually decreased almost to the pregypsum level after 3 years. Laboratory experiments with Unio crassus mussels and gypsum-spiked river water showed significant effects on foot movement activity, which was more intense with the highest sulfate concentration (1100 mg/L) than with the control. Survival of the glochidia after 24 and 48 h of exposure was not significantly affected by sulfate concentrations up to 1000 mg/L, nor was the length growth of the moss Fontinalis antipyretica affected. The field studies on benthic algal biomass accrual, mussel and fish density, and Salmo trutta embryo survival did not show gypsum amendment effects. Gypsum treatment did not raise the sulfate concentrations even to a level just close to critical for the biota studied. However, because the effects of sulfate are dependent on both the spatial and the temporal contexts, we advocate water quality and biota monitoring with proper temporal and spatial control in rivers within gypsum treatment areas

    Immunohistochemical somatostatin receptor expression in insulinomas

    No full text
    Abstract Insulinomas are rare pancreatic neuroendocrine tumours. Most patients can be cured with surgery, but patients with a metastatic disease show impaired survival. The aim of this study was to evaluate somatostatin receptor (SSTR) 1‐5 expression in insulinomas and to correlate the expression profile with clinicopathological variables and with patient outcome. This retrospective study involved 52 insulinoma patients. After histological re-evaluation, formalin-fixed paraffin-embedded tissue samples were processed into tissue microarrays and stained immunohistochemically with monoclonal SSTR1‐5 antibodies. All the 52 tumours (49 non-metastatic, 3 metastatic) expressed at least one SSTR subtype. SSTR2 was expressed most frequently (71%), followed by SSTR3 (33%), SSTR1 (27%), SSTR5 (6%) and SSTR4 (0%). SSTR3 expression was associated with a larger tumour size (median diameter 19 mm vs. 13 mm, p = 0.043), and SSTR3 and SSTR5 expression were associated with impaired overall survival [HR 3.532 (95% CI 1.106‐11,277), p = 0.033, and HR 6.805 (95% CI 1.364‐33.955), p = 0.019 respectively]. Most insulinomas express SSTR2, which may be utilized in diagnostic imaging, and in planning individualized treatment strategies for insulinoma patients. Further studies are needed to clarify the association between SSTR profile and overall survival

    Long-term morbidity and mortality in patients diagnosed with an insulinoma

    Get PDF
    Abstract Objective: Insulinomas are rare functional pancreatic neuroendocrine tumours. As previous data on the long-term prognosis of insulinoma patients are scarce, we studied the morbidity and mortality in the Finnish insulinoma cohort. Design: Retrospective cohort study. Methods: Incidence of endocrine, cardiovascular, gastrointestinal and psychiatric disorders, and cancers was compared in all the patients diagnosed with an insulinoma in Finland during 1980–2010 (n = 79, including two patients with multiple endocrine neoplasia type 1 syndrome), vs 316 matched controls, using the Mantel–Haenszel method. Overall survival was analysed with Kaplan–Meier and Cox regression analyses Results: The median length of follow-up was 10.7 years for the patients and 12.2 years for the controls. The long-term incidence of atrial fibrillation (rate ratio (RR): 2.07 (95% CI: 1.02–4.22)), intestinal obstruction (18.65 (2.09–166.86)), and possibly breast (4.46 (1.29–15.39) and kidney cancers (RR not applicable) was increased among insulinoma patients vs controls, P  < 0.05 for all comparisons. Endocrine disorders and pancreatic diseases were more frequent in the patients during the first year after insulinoma diagnosis, but not later on. The survival of patients with a non-metastatic insulinoma (n = 70) was similar to that of controls, but for patients with distant metastases (n = 9), the survival was significantly impaired (median 3.4 years). Conclusions: The long-term prognosis of patients with a non-metastatic insulinoma is similar to the general population, except for an increased incidence of atrial fibrillation, intestinal obstruction, and possibly breast and kidney cancers. These results need to be confirmed in future studies. Metastatic insulinomas entail a markedly decreased survival

    Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease

    No full text
    Abstract Background & Aims: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) (‘MetComp’) and part by common modifiers of genetic risk (‘GenComp’). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. Methods: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D₅-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D₂O (n = 61). Results: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the ‘MetComp’. In contrast, the ‘GenComp’ was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum ÎČ-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum ÎČ-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. Conclusions: These data show that the mechanisms underlying ‘Metabolic’ and ‘Genetic’ components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. Lay summary: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates
    corecore