330 research outputs found

    Axial heterogeneity and filtered-load dependence of proximal bicarbonate reabsorption

    Get PDF
    A theoretical model was developed to examine the role of physical and chemical factors in the control of bicarbonate reabsorption in the renal proximal tubule. Included in the model were axial and radial variations in the concentrations of HCO3-, CO2 and related chemical species in the tubule lumen and epithelial cells. Relations between these concentrations and the solute fluxes across the brush border and basolateral membranes were also included, as were reaction rate and equilibrium expressions to describe the various buffering processes in the lumen and cells. The two most critical membrane parameters, the rate constant for H+ secretion at the brush border and the effective permeability of HCO3- at the basolateral membrane, were evaluated by comparing model predictions with available free-flow micropuncture data in the rat. It was found that the experimental observations could be explained only by decreasing one or both of these membrane parameters with axial position, suggesting a progressive decrease in HCO3- reabsorptive capacity along the tubule. For single nephron filtered loads of HCO3- up to about 1,400 pmol/min, absolute bicarbonate reabsorption was predicted to increase nearly in proportion to filtered load, whereas it was calculated to be relatively constant at higher filtered loads, irrespective of how filtered load was assumed to be varied. These predictions are in excellent agreement with most of the available micropuncture data in rats, as is the prediction that HCO3- reabsorption should change in parallel with CO2 partial pressure in the filtrate, at a given filtered load of HCO3–. Certain discrepancies between the model predictions and experimental observations are evident at very high filtered loads, and the implications of these are discussed in terms of possible adaptive responses of the tubule

    Allometric trajectories of body and head morphology in three sympatric Arctic charr (Salvelinus alpinus (L.)) morphs

    Get PDF
    A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions

    Increasing body mass index at diagnosis of diabetes in young adult people during 1983-1999 in the Diabetes Incidence Study in Sweden (DISS).

    Get PDF
    Objective. To study trends in body mass index (BMI) at diagnosis of diabetes in all young Swedish adults in the age range of 15-34 years registered in a nation-based registry. Design. The BMI was assessed at diagnosis in diabetic patients 15-34 years of age at diagnosis, for a period of 17 years (1983-1999). Islet cell antibodies (ICA) were measured during three periods (1987-1988, 1992-1993 and 1998-1999). Setting. A nationwide study (Diabetes Incidence Study in Sweden). Subjects. A total of 4727 type 1 and 1083 type 2 diabetic patients. Main outcome measures. Incidence-year specific BMI adjusted for age, gender and time of diagnosis (month). Results. Body mass index at diagnosis increased significantly both in type 1 (21.4 ± 3.6 to 22.5 ± 4.0; P < 0.0001) and in type 2 (27.4 ± 6.8 to 32.0 ± 6.0; P < 0.0001) diabetic patients, also when adjusted for age, gender and month of diagnosis. A similar significant increase in BMI was found in type 1 diabetic patients and in type 2 diabetic patients in the periods 1987-1988, 1992-1993 and 1998-1999; years when ICA were assessed and considered in the classification of diabetes. Despite this increase in BMI, there was no increase in the incidence of diabetes in young-adult people in Sweden. Conclusion. Body mass index at diagnosis of diabetes in subjects 15-34 years of age has substantially increased during 1983-1999 in Sweden when adjusted for age, gender and month of diagnosis

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    Indiscriminate Males: Mating Behaviour of a Marine Snail Compromised by a Sexual Conflict?

    Get PDF
    Background: In promiscuous species, male fitness is expected to increase with repeated matings in an open-ended fashion (thereby increasing number of partners or probability of paternity) whereas female fitness should level out at some optimal number of copulations when direct and indirect benefits still outweigh the costs of courtship and copulation. After this fitness peak, additional copulations would incur female fitness costs and be under opposing selection. Hence, a sexual conflict over mating frequency may evolve in species where females are forced to engage in costly matings. Under such circumstance, if females could avoid male detection, significant fitness benefits from such avoidance strategies would be predicted. Methodology/Principal Findings: Among four Littorina species, one lives at very much higher densities and has a longer mating season than the other three species. Using video records of snail behaviour in a laboratory arena we show that males of the low-density species discriminate among male and female mucous trails, trailing females for copulations. In the high-density species, however, males fail to discriminate between male and female trails, not because males are unable to identify female trails (which we show using heterospecific females), but because females do not, as the other species, add a gender-specific cue to their trail. Conclusions/Significance: We conclude that there is likely a sexual conflict over mating frequency in the high-densit

    Phylogeny of Diving Beetles Reveals a Coevolutionary Arms Race between the Sexes

    Get PDF
    BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles

    Coevolution of Male and Female Genital Morphology in Waterfowl

    Get PDF
    Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations

    Mating with Stressed Males Increases the Fitness of Ant Queens

    Get PDF
    BACKGROUND: According to sexual conflict theory, males can increase their own fitness by transferring substances during copulation that increase the short-term fecundity of their mating partners at the cost of the future life expectancy and re-mating capability of the latter. In contrast, sexual cooperation is expected in social insects. Mating indeed positively affects life span and fecundity of young queens of the male-polymorphic ant Cardiocondyla obscurior, even though males neither provide nuptial gifts nor any other care but leave their mates immediately after copulation and die shortly thereafter. PRINCIPAL FINDINGS: Here, we show that mating with winged disperser males has a significantly stronger impact on life span and reproductive success of young queens of C. obscurior than mating with wingless fighter males. CONCLUSIONS: Winged males are reared mostly under stressful environmental conditions, which force young queens to disperse and found their own societies independently. In contrast, queens that mate with wingless males under favourable conditions usually start reproducing in the safety of the established maternal nest. Our study suggests that males of C. obscurior have evolved mechanisms to posthumously assist young queens during colony founding under adverse ecological conditions

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic
    corecore