2,943 research outputs found

    What Is a Misleading Statement or Omission Under Rule 10b-5?

    Get PDF

    Judicial and Administrative Remedies Available to the SEC for Breaches of Rule 10b-5

    Get PDF

    Affirmative Defenses to Securities Exchange Act Rule 10b-5 Actions

    Get PDF

    Antarctic Ocean polynyas

    Get PDF
    The spatial and temporal variability of sea ice concentrations derived from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures are presented. Emphasis is on the continental shelf region of the Ross Sea during 1984, when supporting data were obtained from oceanographic stations and moored instruments. The effects of the large spring polynya in the Ross Sea on summer insolation, surface heat layer storage, and late autumn ice formation are described

    Cooling and ventilating the abyssal ocean

    Get PDF
    The abyssal ocean is filled with cold, dense waters that sink along the Antarctic continental slope and overflow sills that lie south of the Nordic Seas. Recent integrations of chlorofluorocarbon‐11 (CFC) measurements are similar in Antarctic Bottom Water (AABW) and in lower North Atlantic Deep Water (NADW), but Antarctic inputs are ≈ 2°C colder than their northern counterparts. This indicates comparable ventilation rates from both polar regions, and accounts for the Southern Ocean dominance over abyssal cooling. The decadal CFC‐based estimates of recent ventilation are consistent with other hydrographic observations and with longer‐term radiocarbon data, but not with hypotheses of a 20th‐century slowdown in the rate of AABW formation. Significant variability is not precluded by the available ocean measurements, however, and interannual to decadal changes are increasingly evident at high latitudes

    Variation of jet quenching from RHIC to LHC and thermal suppression of QCD coupling constant

    Full text link
    We perform a joint jet tomographic analysis of the data on the nuclear modification factor RAAR_{AA} from PHENIX at RHIC and ALICE at LHC. The computations are performed accounting for radiative and collisional parton energy loss with running coupling constant. Our results show that the observed slow variation of RAAR_{AA} from RHIC to LHC indicates that the QCD coupling constant is suppressed in the quark-gluon plasma produced at LHC.Comment: 9 pages, 2 figure

    Deployable Optical Receiver Array Cubesat

    Get PDF
    Small satellites and cubesats often have low data transmission rates due to the use of low-gain radio links in UHF and S bands. These links typically provide up to only 1 Mbps for communication between the ground and LEO, limiting the applications and mission operations of small satellites. Optical communication technology can enable much higher data rates and is rapidly gaining hold for larger satellites, including for crosslinks within SpaceX’s Starlink constellation and upcoming NASA deep space missions. However, it has been difficult to implement on small satellites and cubesats due to the need for precision pointing on the order of arcseconds to align the narrow optical laser beam between terminals--a laser transmitter in LEO may yield a footprint less than 100 meters wide at its receiving ground station. We report the development of a 3U cubesat to demonstrate new optical communication technology that eliminates precision pointing accuracy requirements on the host spacecraft. The deployable optical receiver aperture (DORA) aims to demonstrate 1 Gbps data rates over distances of thousands of kilometers. DORA requires an easily accommodated host pointing accuracy of only 10 degrees with minimal stability, allowing the primary mission to continue without reorienting to communicate and/or enabling small satellite missions using low-cost off-the-shelf ADCS systems. To achieve this performance, DORA replaces the traditional receiving telescope on the spacecraft with a collection of wide-angle photodiodes that can identify the angle of arrival for incoming communication lasers and steer the onboard transmitting laser in the corresponding direction. This work is motivated by NASA’s plans for a lunar communications and navigation network and supported by NASA’s Space Technology Program (STP). It is ideally suited for crosslink communications among small spacecraft, especially for those forming a swarm and/or a constellation, and for surface to orbit communications. We will implement the deployable optical receiver aperture and miniature transmission telescope as a 1U payload in the 3U cubesat and conduct the demonstration flight in LEO. Future implementations of the DORA technology are expected to further enable omnidirectional receiving of multiple optical communications simultaneously and accommodate multiple transmitting modules on a single cubesat

    Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions

    Full text link
    We propose a quasi-particle model to describe the lattice QCD equation of state for pure SU(3) gauge theory in its deconfined state, for T1.5TcT \ge 1.5T_c. The method involves mapping the interaction part of the equation of state to an effective fugacity of otherwise non-interacting quasi-gluons. We find that this mapping is exact. Using the quasi-gluon distribution function, we determine the energy density and the modified dispersion relation for the single particle energy, in which the trace anomaly is manifest. As an application, we first determine the Debye mass, and then the important transport parameters, {\it viz}, the shear viscosity, η\eta and the shear viscosity to entropy density ratio, η/S\eta/{\mathcal S}. We find that both η\eta and η/S\eta/{\mathcal S} are sensitive to the interactions, and that the interactions significantly lower both η\eta and η/S\eta/\mathcal S.Comment: 10 pages, 8 figures, epj class file, version accepted for publication in Euro. Phys.J

    Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    Get PDF
    Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood
    corecore