11,960 research outputs found

    Electrical conductivity and thermal dilepton rate from quenched lattice QCD

    Get PDF
    We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at T≃1.45TcT\simeq 1.45 T_c using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 TcT_c will be presented.Comment: 4 pages, 6 eps figures, to appear in the proceedings of Quark Matter 2011, 23-28 May 2011, Annecy, Franc

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Effective dynamics of an electrically charged string with a current

    Full text link
    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.Comment: 14 pages, 3 figures, format changed, minor change

    The phase-dependent linear conductance of a superconducting quantum point contact

    Full text link
    The exact expression for the phase-dependent linear conductance of a weakly damped superconducting quantum point contact is obtained. The calculation is performed by summing up the complete perturbative series in the coupling between the electrodes. The failure of any finite order perturbative expansion in the limit of small voltage and small quasi-particle damping is analyzed in detail. In the low transmission regime this nonperturbative calculation yields a result which is at variance with standard tunnel theory. Our result predicts the correct sign of the quasi-particle pair interference term and exhibits an unusual phase-dependence at low temperatures in qualitative agreement with the available experimental data.Comment: 12 pages (revtex) + 1 postscript figure. Submitted to Phys. Rev. Let

    Output Management for Agriculture?

    Get PDF
    Could agriculture learn to manage its output from some other industries? Some industries have experience in managing excess capacity. Agriculture might want to look at the alternative methods and their consequences

    A Time-Orbiting Potential Trap for Bose-Einstein Condensate Interferometry

    Full text link
    We describe a novel atom trap for Bose-Einstein condensates of 87Rb to be used in atom interferometry experiments. The trap is based on a time-orbiting potential waveguide. It supports the atoms against gravity while providing weak confinement to minimize interaction effects. We observe harmonic oscillation frequencies omega_x, omega_y, omega_z as low as 2 pi times (6.0,1.2,3.3) Hz. Up to 2 times 10^4 condensate atoms have been loaded into the trap, at estimated temperatures as low as 850 pK. We anticipate that interferometer measurement times of 1 s or more should be achievable in this device.Comment: 9 pages, 3 figure

    Weed Control in Small Grain

    Get PDF
    This publication provides guidance on general control methods, herbicide facts and recommendations, cropping, and noxious weed control for spring and winter grains. It includes diagrams and tables for assistance in determining small grain growth stages, herbicide cost and quantity, and susceptibility of small grain varieties to certain chemical applications

    Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    Get PDF
    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels

    Screened Perturbation Theory to Three Loops

    Full text link
    The thermal physics of a massless scalar field with a phi^4 interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast to the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.Comment: 30 pages, 10 figure

    The turbulent spectrum created by non-Abelian plasma instabilities

    Full text link
    Recent numerical work on the fate of plasma instabilities in weakly-coupled non-Abelian gauge theory has shown the development of a cascade of energy from long to short wavelengths. This cascade has a steady-state spectrum, analogous to the Kolmogorov spectrum for turbulence in hydrodynamics or for energy cascades in other systems. In this paper, we theoretically analyze processes responsible for this cascade and find a steady-state spectrum f_k ~ k^-2, where f_k is the phase-space density of particles with momentum k. The exponent -2 is consistent with results from numerical simulations. We also discuss implications of the emerging picture of instability development on the "bottom-up" thermalization scenario for (extremely high energy) heavy ion collisions, emphasizing fundamental questions that remain to be answered.Comment: 17 pages, 5 figure
    • …
    corecore