599 research outputs found

    The Photosensitizer Temoporfin (mTHPC) – Chemical, Pre‐clinical and Clinical Developments in the Last Decade†‡

    Get PDF
    This review follows the research, development and clinical applications of the photosensitizer 5,10,15,20‐tetra(m‐hydroxyphenyl)chlorin (mTHPC, temoporfin) in photodynamic (cancer) therapy (PDT) and other medical applications. Temoporfin is the active substance in the medicinal product Foscan® authorized in the EU for the palliative treatment of head and neck cancer. Chemistry, biochemistry and pharmacology, as well as clinical and other applications of temoporfin are addressed, including the extensive work that has been done on formulation development including liposomal formulations. The literature has been covered from 2009 to early 2022, thereby connecting it to the previous extensive review on this photosensitizer published in this journal [Senge, M. O. and J. C. Brandt (2011) Photochem. Photobiol. 87, 1240–1296] which followed its way from initial development to approval and clinical application

    Combining F-18-FDG positron emission tomography with Up-to-seven criteria for selecting suitable liver transplant patients with advanced hepatocellular carcinoma

    Get PDF
    The Up-to-seven (UTS) criteria (sum of tumor size and number not exceeding 7) for indicating liver transplantation (LT) in hepatocellular carcinoma (HCC) were originally based on explant pathology features and absence of microvascular invasion (MVI). F-18-fludeoxyglucose (F-18-FDG) positron emission tomography (PET) was shown to indicate the risk of MVI and tumor recurrence. The aim of this study was to analyze the prognostic significance of the clinical UTS criteria when being combined with PET-status of the tumor. Data of 116 liver transplant patients were subject to retrospective analysis. Five-year recurrence-free survival (RFS) rates in patients meeting (n = 85) and exceeding (n = 21) the radiographic UTS criteria were 81% and 55.1%, respectively (p = 0.014). In the UTS In subset, RFS was significantly better in PET-negative (94.9%) than in PET-positive patients (48.3%;p < 0.001). In the UTS Out subset, 5-year RFS rates were 87.1% and 19% in patients with non-F-18-FDG-avid and F-18-FDG-avid tumors (p < 0.001), respectively. Positive PET-status was identified as the only independent clinical predictor of tumor recurrence in beyond UTS patients (Hazard ratio [HR] 19.25;p < 0.001). Combining radiographic UTS criteria with FDG-PET may safely expand the HCC selection criteria for LT

    Dipyrrinato‐Iridium(III) Complexes for Application in Photodynamic Therapy and Antimicrobial Photodynamic Inactivation

    Get PDF
    The generation of bio-targetable photosensitizers is of utmost importance to the emerging field of photodynamic therapy and antimicrobial (photo-)therapy. A synthetic strategy is presented in which chelating dipyrrin moieties are used to enhance the known photoactivity of iridium(III) metal complexes. Formed complexes can thus be functionalized in a facile manner with a range of targeting groups at their chemically active reaction sites. Dipyrrins with N- and O-substituents afforded (dipy)iridium(III) complexes via complexation with the respective Cp*-iridium(III) and ppy-iridium(III) precursors (dipy=dipyrrinato, Cp*=pentamethyl-eta(5)-cyclopentadienyl, ppy=2-phenylpyridyl). Similarly, electron-deficient [Ir-III(dipy)(ppy)(2)] complexes could be used for post-functionalization, forming alkenyl, alkynyl and glyco-appended iridium(III) complexes. The phototoxic activity of these complexes has been assessed in cellular and bacterial assays with and without light; the [Ir-III(Cl)(Cp*)(dipy)] complexes and the glyco-substituted iridium(III) complexes showing particular promise as photomedicine candidates. Representative crystal structures of the complexes are also presented

    Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality

    Full text link
    The Fourier transform is often used to connect the Lorentzian energy distribution for resonance scattering to the exponential time dependence for decaying states. However, to apply the Fourier transform, one has to bend the rules of standard quantum mechanics; the Lorentzian energy distribution must be extended to the full real axis <E<-\infty<E<\infty instead of being bounded from below 0E<0\leq E <\infty (``Fermi's approximation''). Then the Fourier transform of the extended Lorentzian becomes the exponential, but only for times t0t\geq 0, a time asymmetry which is in conflict with the unitary group time evolution of standard quantum mechanics. Extending the Fourier transform from distributions to generalized vectors, we are led to Gamow kets, which possess a Lorentzian energy distribution with <E<-\infty<E<\infty and have exponential time evolution for tt0=0t\geq t_0 =0 only. This leads to probability predictions that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.

    Cancer risk and mortality after solid organ transplantation : A population-based 30-year cohort study in Finland

    Get PDF
    Cancer is a significant cause of morbidity and mortality after solid organ transplantation (SOT) and related to lifelong immunosuppression. This retrospective registry study assessed for the first time in Finland population-based cancer risk and cancer mortality after all SOTs (lung and childhood transplantations included) as standardized incidence ratios (SIRs) and standardized mortality ratios (SMRs). Data from transplant registries were linked with the data of Finnish Cancer Registry and Statistics Finland. We followed 6548 consecutive first SOT recipients from 1 January 1987 to 31 December 2016 translating to 66 741 person-years (median follow-up time 8.9 years [interquartile range 4.0-15.1]). In total, 2096 cancers were found in 1483 patients (23% of all patients). Majority of cancers (53%) were nonmelanoma skin cancers (NMSCs). The overall SIR was 3.6 (95% confidence interval [CI]: 3.5-3.8) and the SIR excluding NMSCs was 2.2 (95% CI: 2.0-2.3). SIR for all cancers was highest for heart (5.0) and lowest for liver (2.7) recipients. Most common cancer types after NMSCs were non-Hodgkin lymphoma (NHL), SIR 9.9 (95% CI: 8.5-11.4) and kidney cancer, SIR 7.3 (95% CI: 6.0-8.8). Cancer-related deaths were 17% (n = 408) of all deaths after first month post transplantation. SMR for all cancers was 2.5 (95% CI: 2.2-2.7) and for NHL 13.6 (95% CI: 10.7-16.8). Notably, overall SIR for cancer was lower in later period (2000-2016), 3.0 (95% CI: 2.8-3.2), than in earlier period (1987-1999), 4.3 (95% CI: 4.0-4.5), P < .001. Decrease in cancer incidence was temporally associated with major changes in immunosuppression in the 2000s.Peer reviewe

    Diagrammatic self-energy approximations and the total particle number

    Get PDF
    There is increasing interest in many-body perturbation theory as a practical tool for the calculation of ground-state properties. As a consequence, unambiguous sum rules such as the conservation of particle number under the influence of the Coulomb interaction have acquired an importance that did not exist for calculations of excited-state properties. In this paper we obtain a rigorous, simple relation whose fulfilment guarantees particle-number conservation in a given diagrammatic self-energy approximation. Hedin's G(0)W(0) approximation does not satisfy this relation and hence violates the particle-number sum rule. Very precise calculations for the homogeneous electron gas and a model inhomogeneous electron system allow the extent of the nonconservation to be estimated
    corecore