47 research outputs found

    Cambio climático, uso de riego y estrategias de diversificación de cultivos en la sierra peruana

    Get PDF
    El objetivo de este estudio es contribuir a entender el cambio en las condiciones climáticas ocurrido en la sierra peruana durante el periodo 1994-2012, e identificar algunos de los efectos que este cambio ha tenido en las decisiones vinculadas a las estrategias productivas de los agricultores de esta región; en particular, al uso del riego y la diversificación de los cultivos

    Resolving the SLOSS dilemma for biodiversity conservation: a research agenda

    Get PDF
    The legacy of the ‘SL > SS principle’, that a single or a few large habitat patches (SL) conserve more species than several small patches (SS), is evident in decisions to protect large patches while down-weighting small ones. However, empirical support for this principle is lacking, and most studies find either no difference or the opposite pattern (SS > SL). To resolve this dilemma, we propose a research agenda by asking, ‘are there consistent, empirically demonstrated conditions leading to SL > SS?’ We first review and summarize ‘single large or several small’ (SLOSS) theory and predictions. We found that most predictions of SL > SS assume that between-patch variation in extinction rate dominates the outcome of the extinction–colonization dynamic. This is predicted to occur when populations in separate patches are largely independent of each other due to low between-patch movements, and when species differ in minimum patch size requirements, leading to strong nestedness in species composition along the patch size gradient. However, even when between-patch variation in extinction rate dominates the outcome of the extinction–colonization dynamic, theory can predict SS > SL. This occurs if extinctions are caused by antagonistic species interactions or disturbances, leading to spreading-of-risk of landscape-scale extinction across SS. SS > SL is also predicted when variation in colonization dominates the outcome of the extinction–colonization dynamic, due to higher immigration rates for SS than SL, and larger species pools in proximity to SS than SL. Theory that considers change in species composition among patches also predicts SS > SL because of higher beta diversity across SS than SL. This results mainly from greater environmental heterogeneity in SS due to greater variation in micro-habitats within and across SS habitat patches (‘across-habitat heterogeneity’), and/or more heterogeneous successional trajectories across SS than SL. Based on our review of the relevant theory, we develop the ‘SLOSS cube hypothesis’, where the combination of three variables – between-patch movement, the role of spreading-of-risk in landscape-scale population persistence, and across-habitat heterogeneity – predict the SLOSS outcome. We use the SLOSS cube hypothesis and existing SLOSS empirical evidence, to predict SL > SS only when all of the following are true: low between-patch movement, low importance of spreading-of-risk for landscape-scale population persistence, and low across-habitat heterogeneity. Testing this prediction will be challenging, as it will require many studies of species groups and regions where these conditions hold. Each such study would compare gamma diversity across multiple landscapes varying in number and sizes of patches. If the prediction is not generally supported across such tests, then the mechanisms leading to SL > SS are extremely rare in nature and the SL > SS principle should be abandoned

    Linking changes in species composition and biomass in a globally distributed grassland experiment

    Get PDF
    Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.EEA Santa CruzFil: Ladouceur, Emma. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Ladouceur, Emma. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaFil: Ladouceur, Emma. University of Leipzig. Department of Biology; AlemaniaFil: Ladouceur, Emma. Martin Luther University Halle-Wittenberg. Institute of Computer Science; AlemaniaFil: Blowes, Shane A. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Blowes, Shane A. Martin Luther University Halle-Wittenberg. Institute of Computer Science; AlemaniaFil: Chase, Jonathan M. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Chase, Jonathan M. Martin Luther University Halle-Wittenberg. Institute of Computer Science; AlemaniaFil: Clark, Adam T. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Clark, Adam T. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaFil: Clark, Adam T. Karl-Franzens University of Graz. Institute of Biology; Austria.Fil: Garbowski, Magda. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Garbowski, Magda. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Laboratorio de Ecología. Mar del Plata; Argentina.Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Arnillas, Carlos Alberto. University of Toronto. Department of Physical and Environmental Sciences; Canadá.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Barrio, Isabel C. Agricultural University of Iceland. Faculty of Environmental and Forest Sciences; IslandiaFil: Bharath, Siddharth. Atria University; India.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Harpole, Stanley. German Centre for Integrative Biodiversity Research (iDiv); AlemaniaFil: Harpole, Stanley. Helmholtz Centre for Environmental Research – UFZ. Department of Physiological Diversity; AlemaniaMartin Luther University Halle-Wittenberg. Institute of Computer Science; Alemani

    Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.EEA Santa CruzFil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.Fil: Borer, Elizabeth T. University of Minnesota; Estados UnidosFil: Seabloom, Eric W. University of Minnesota; Estados UnidosFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.Fil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados UnidosFil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.Fil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; IrlandaFil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.Fil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.Fil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá

    Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands

    Get PDF
    1- Plant damage by invertebrate herbivores and pathogens influences the dynamics of grassland ecosystems, but anthropogenic changes in nitrogen and phosphorus availability can modify these relationships. 2- Using a globally distributed experiment, we describe leaf damage on 153 plant taxa from 27 grasslands worldwide, under ambient conditions and with experimentally elevated nitrogen and phosphorus. 3- Invertebrate damage significantly increased with nitrogen addition, especially in grasses and non-leguminous forbs. Pathogen damage increased with nitrogen in grasses and legumes but not forbs. Effects of phosphorus were generally weaker. Damage was higher in grasslands with more precipitation, but climatic conditions did not change effects of nutrients on leaf damage. On average, invertebrate damage was relatively higher on legumes and pathogen damage was relatively higher on grasses. Community-weighted mean damage reflected these functional group patterns, with no effects of N on community-weighted pathogen damage (due to opposing responses of grasses and forbs) but stronger effects of N on community-weighted invertebrate damage (due to consistent responses of grasses and forbs). 4- Synthesis. As human-induced inputs of nitrogen and phosphorus continue to increase, understanding their impacts on invertebrate and pathogen damage becomes increasingly important. Our results demonstrate that eutrophication frequently increases plant damage and that damage increases with precipitation across a wide array of grasslands. Invertebrate and pathogen damage in grasslands is likely to increase in the future, with potential consequences for plant, invertebrate and pathogen communities, as well as the transfer of energy and nutrients across trophic levels.EEA Santa CruzFil: Ebeling, Anne. University of Jena. Institute of Ecology and Evolution; AlemaniaFil: Strauss, Alex T. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados UnidosFil: Strauss, Alex T. University of Georgia. Odum School of Ecology; Estados UnidosFil: Adler, Peter B. Utah State University. Department of Wildland Resources and the Ecology Center; Estados UnidosFil: Arnillas, Carlos Alberto. University of Toronto —Scarborough. Department of Physical and Environmental Sciences; CanadáFil: Barrio, Isabel C. Agricultural University of Iceland. Faculty of Environmental and Forest Sciences; IslandiaFil: Biederman, Lori A. Iowa State University. Department of Ecology, Evolution, and Organismal Biology; Estados UnidosFil. Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados UnidosFil: Bugalho, Miguel N. University of Lisbon. Centre for Applied Ecology (CEABN-InBIO). School of Agriculture; Portugal.Fil: Caldeira, Maria C. University of Lisbon. Forest Research Centre. School of Agriculture; Portugal.Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; CanadáFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Blumenthal, Dana M. USDA-ARS, Rangeland Resources & Systems Research Unit; Estados Unido

    Linking changes in species composition and biomass in a globally distributed grassland experiment

    Get PDF
    Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.Fil: Ladouceur, Emma. Martin Luther University Halle-Wittenberg; Alemania. Universitat Leipzig; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; AlemaniaFil: Blowes, Shane A.. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; AlemaniaFil: Chase, Jonathan M.. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Clark, Adam T.. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. University of Graz; AustriaFil: Garbowski, Magda. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. Universitat Leipzig; AlemaniaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Arnillas, Carlos Alberto. University of Toronto; CanadáFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Barrio, Isabel C.. Agricultural University of Iceland; IslandiaFil: Bharath, Siddharth. Atria University; IndiaFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Cadotte, Marc W.. University of Toronto; CanadáFil: Chen, Qingqing. Peking University; ChinaFil: Collins, Scott L.. University of New Mexico; Estados UnidosFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Du, Guozhen. Lanzhou University; ChinaFil: Ebeling, Anne. Universitat Jena; AlemaniaFil: Eisenhauer, Nico. Martin Luther University Halle—Wittenberg; Alemania. German Centre For Integrative Biodiversity Research (idiv) Halle-jena-leipzig; AlemaniaFil: Fay, Philip A.. USDA-ARS Grassland Soil and Water Research Lab; Estados UnidosFil: Hagenah, Nicole. University Of Pretoria; SudáfricaFil: Hautier, Yann. University of Utrecht; Países BajosFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Jónsdóttir, Ingibjörg S.. University of Iceland; IslandiaFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: Martina, Jason P.. Texas State University; Estados UnidosFil: Moore, Joslin L.. Arthur Rylah Institute For Environmental Research; Australia. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (\u3c50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities

    Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; CanadáFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Baez, Selene. Escuela Politécnica Nacional; EcuadorFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Boughton, Elizabeth H.. Archbold Biological Station; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel Nuno. Universidad de Lisboa; PortugalFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Dwyer, John. University of Queensland; AustraliaFil: Firn, Jennifer. The University of Queensland; AustraliaFil: Gridzak, Riley. Queens University; CanadáFil: Hagenah, Nicole. University of Pretoria; SudáfricaFil: Hautier, Yann. Utrecht University; Países BajosFil: Helm, Aveliina. University of Tartu; EstoniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados UnidosFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laanisto, Lauri. Estonian University of Life Sciences; EstoniaFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: McCulley, Rebecca. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; ArgentinaFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Sankaran, Mahesh. National Centre for Biological Sciences; IndiaFil: Schamp, Brandon. Algoma University; CanadáFil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Standish, Rachel. Murdoch University; AustraliaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canad

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.National Science Foundation; Natural Sciences and Engineering Research Council of Canada; Institute on the Environment, University of Minnesota and Portuguese Science Foundation.http://www.ecolevol.orghj2022Mammal Research InstituteZoology and Entomolog

    Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide

    Get PDF
    Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non–nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.DATA AVAILABILITY : Plant, PAR, climate, and soil nitrogen data have been deposited in the Environmental Data Initiative (EDI) repository (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.838.1) (83). Source data are provided with this paper.This work was generated using data from the Nutrient Network (https://nutnet.org/) experiment, funded at the site scale by individual researchers. Coordination and data management were supported by funding to E.T.B. and E.W.S. from the NSF Research Coordination Network (NSF-DEB-1042132) and Long-Term Ecological Research (NSF-DEB-1234162 to Cedar Creek Long-Term Ecological Research) programs, and the Institute on the Environment (DG-0001-13). We also thank the Minnesota Supercomputer Institute for hosting project data and the Institute of the Environment for hosting Network meetings. P.M.T. was supported by an Argentine Research Council fellowship (Consejo Nacional de Investigaciones Científicas y Técnicas) and the Australian Endeavour Programme.https://www.pnas.orghj2022Mammal Research InstituteZoology and Entomolog
    corecore