35 research outputs found

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK

    Get PDF
    3D non-linear MHD simulations of a D 2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n = 2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q = 3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q = 3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An I p spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed

    Scientific opinion: Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods

    Get PDF
    Tetrodotoxin (TTX) and its analogues are produced by marine bacteria and have been detected in marine bivalves and gastropods from European waters. The European Commission asked EFSA for a scientific opinion on the risks to public health related to the presence of TTX and TTX analogues in marine bivalves and gastropods. The Panel on Contaminants in the Food Chain reviewed the available literature but did not find support for the minimum lethal dose for humans of 2 mg, mentioned in various reviews. Some human case reports describe serious effects at a dose of 0.2 mg, corresponding to 4 μg/kg body weight (bw). However, the uncertainties on the actual exposure in the studies preclude their use for derivation of an acute reference dose (ARfD). Instead, a group ARfD of 0.25 μg/kg bw, applying to TTX and its analogues, was derived based on a TTX dose of 25 μg/kg bw at which no apathy was observed in an acute oral study with mice, applying a standard uncertainty factor of 100. Estimated relative potencies for analogues are lower than that of TTX but are associated with a high degree of uncertainty. Based on the occurrence data submitted to EFSA and reported consumption days only, average and P95 exposures of 0.00–0.09 and 0.00–0.03 μg/kg bw, respectively, were calculated. Using a large portion size of 400 g bivalves and P95 occurrence levels of TTX, with exception of oysters, the exposure was below the group ARfD in all consumer groups. A concentration below 44 μg TTX equivalents/kg shellfish meat, based on a large portion size of 400 g, was considered not to result in adverse effects in humans. Liquid chromatography with tandem mass spectroscopy (LC–MS/MS) methods are the most suitable for identification and quantification of TTX and its analogues, with LOQs between 1 and 25 μg/kg
    corecore