9 research outputs found
First operation of a liquid Argon TPC embedded in a magnetic field
We have operated for the first time a liquid Argon TPC immersed in a magnetic
field up to 0.55 T. We show that the imaging properties of the detector are not
affected by the presence of the magnetic field. The magnetic bending of the
ionizing particle allows to discriminate their charge and estimate their
momentum. These figures were up to now not accessible in the non-magnetized
liquid Argon TPC.Comment: 9 pages, 3 figure
Proton driver optimization for new generation neutrino superbeams to search for sub-leading numu->nue oscillations ( angle)
We perform a systematic study of particle production and neutrino yields for
different incident proton energies and baselines , with the aim of
optimizing the parameters of a neutrino beam for the investigation of
-driven neutrino oscillations in the range allowed by
Superkamiokande results. We study the neutrino energy spectra in the
``relevant'' region of the first maximum of the oscillation at a given baseline
. We find that to each baseline corresponds an ``optimal'' proton energy
which minimizes the required integrated proton intensity needed to
observe a fixed number of oscillated events. In addition, we find that the
neutrino event rate in the relevant region scales approximately linearly with
the proton energy. Hence, baselines and proton energies can be
adjusted and the performance for neutrino oscillation searches will remain
approximately unchanged provided that the product of the proton energy times
the number of protons on target remains constant. We apply these ideas to the
specific cases of 2.2, 4.4, 20, 50 and 400 GeV protons. We simulate focusing
systems that are designed to best capture the secondary pions of the
``optimal'' energy. We compute the expected sensitivities to
for the various configurations by assuming the existence
of new generation accelerators able to deliver integrated proton intensities on
target times the proton energy of the order of ${\cal O}(5\times 10^{23})\rm\
GeV\times\rm pot/year$.Comment: 39 pages, 17 figure
Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)
The current focus of the CERN program is the Large Hadron Collider (LHC),
however, CERN is engaged in long baseline neutrino physics with the CNGS
project and supports T2K as recognized CERN RE13, and for good reasons: a
number of observed phenomena in high-energy physics and cosmology lack their
resolution within the Standard Model of particle physics; these puzzles include
the origin of neutrino masses, CP-violation in the leptonic sector, and baryon
asymmetry of the Universe. They will only partially be addressed at LHC. A
positive measurement of would certainly give a
tremendous boost to neutrino physics by opening the possibility to study CP
violation in the lepton sector and the determination of the neutrino mass
hierarchy with upgraded conventional super-beams. These experiments (so called
``Phase II'') require, in addition to an upgraded beam power, next generation
very massive neutrino detectors with excellent energy resolution and high
detection efficiency in a wide neutrino energy range, to cover 1st and 2nd
oscillation maxima, and excellent particle identification and
background suppression. Two generations of large water Cherenkov
detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely
successful. And there are good reasons to consider a third generation water
Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande
for both non-accelerator (proton decay, supernovae, ...) and accelerator-based
physics. On the other hand, a very massive underground liquid Argon detector of
about 100 kton could represent a credible alternative for the precision
measurements of ``Phase II'' and aim at significantly new results in neutrino
astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure
Probing the neutrino mass hierarchy and the 13-mixing with supernovae
We consider in details the effects of the 13-mixing (sin^2 theta_{13}) and of
the type of mass hierarchy/ordering (sign[ Delta m^2_{13}]) on neutrino signals
from the gravitational collapses of stars. The observables (characteristics of
the energy spectra of nu_e and antinu_e events) sensitive to sin^2 theta_{13}
and sign[Delta m^2_{13}] have been calculated. They include the ratio of
average energies of the spectra, r_E = /, the ratio of widths of
the energy distributions, r_Gamma, the ratios of total numbers of nu_e and
antinu_e events at low energies, S, and in the high energy tails, R_{tail}. We
construct and analyze scatter plots which show the predictions for the
observables for different intervals of sin^2 theta_{13} and signs of Delta
m^2_{13}, taking into account uncertainties in the original neutrino spectra,
the star density profile, etc.. Regions in the space of observables r_E,
r_Gamma, S, R_{tail} exist in which certain mass hierarchy and intervals of
sin^2 theta_{13} can be identified or discriminated. We elaborate on the method
of the high energy tails in the spectra of events. The conditions are
formulated for which sin^2 theta_{13} can be (i) measured, (ii) restricted from
below, (iii) restricted from above. We comment on the possibility to determine
sin^2 theta_{13} using the time dependence of the signals due to the
propagation of the shock wave through the resonance layers of the star. We show
that the appearance of the delayed Earth matter effect in one of the channels
(nu_e or antinu_e) in combination with the undelayed effect in the other
channel will allow to identify the shock wave appeareance and determine the
mass hierarchy.Comment: LaTeX, 56 pages, 12 figures; a few clarifications added; typos
corrected. Version to appear in JCA
Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects
This document reports on a series of experimental and theoretical studies
conducted to assess the astro-particle physics potential of three future
large-scale particle detectors proposed in Europe as next generation
underground observatories. The proposed apparatus employ three different and,
to some extent, complementary detection techniques: GLACIER (liquid Argon TPC),
LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of
liquids as active detection media. The results of these studies are presented
along with a critical discussion of the performance attainable by the three
proposed approaches coupled to existing or planned underground laboratories, in
relation to open and outstanding physics issues such as the search for matter
instability, the detection of astrophysical- and geo-neutrinos and to the
possible use of these detectors in future high-intensity neutrino beams.Comment: 50 pages, 26 figure
Scintillation efficiency of nuclear recoil in liquid xenon
Anche nota HEP-EX/000104